A consistent link between drought and pulses of tree mortality across Europe

Cornelius Senf¹, Allen Buras², Christian Zang², Anja Rammig² and Rupert Seidl¹

¹ Ecosystem dynamics and forest management group, Technical University of Munich, Germany

² Land Surface-Atmosphere Interactions, Technical University of Munich, Germany

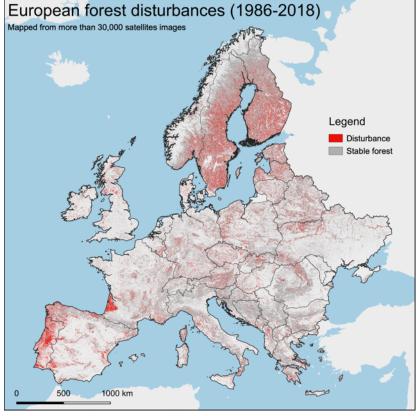
Preamble

This document presents preliminary results from an ongoing research project that has not been published and thus not been peer-reviewed yet. We appreciate your interest in our research, but kindly ask you to take all results with a grain of salt, as they might be subject to changes.

Thank you!

Research questions

(1) Where across continental Europe did pulses of tree mortality occur?


- (2) Are those pulses statistically related to drought conditions?
- (3) Which regions are particularly sensitive to drought-related pulses of tree mortality?

Objectives

- (1) We used high-resolution satellite-based maps of forest canopy mortality to identify pulses of tree mortality at annual resolution and at a spatial grain of 0.5 degrees.
- (2) We following test for a robust statistical relationship between pulses of tree mortality and drought conditions as measured using three different drought indices: climatic water balance (CWB), precipitation anomaly (PREC) and vapor pressure deficit (VPD).

We use 30 m resolution forest disturbance maps covering the period 1987 to 2016 and created from Landsat satellite data in a previous study (Senf and Seidl, *in revision*).

٠

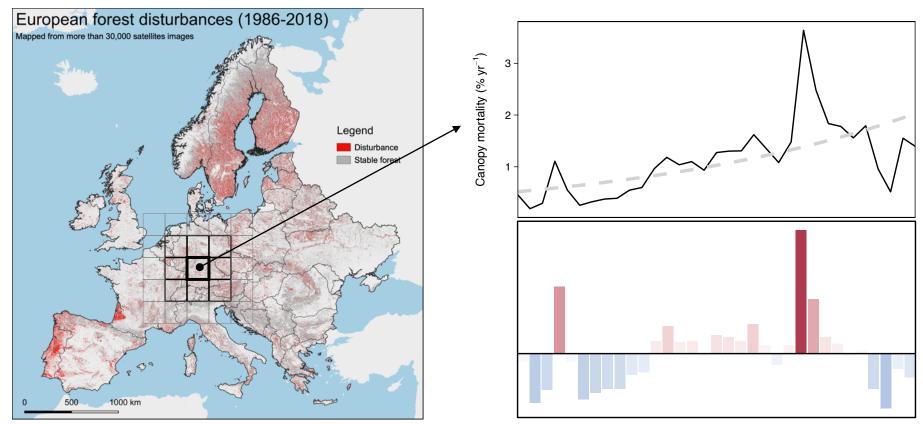
Fig. 1: Annual forest disturbance maps from Senf and Seidl (*in review*)

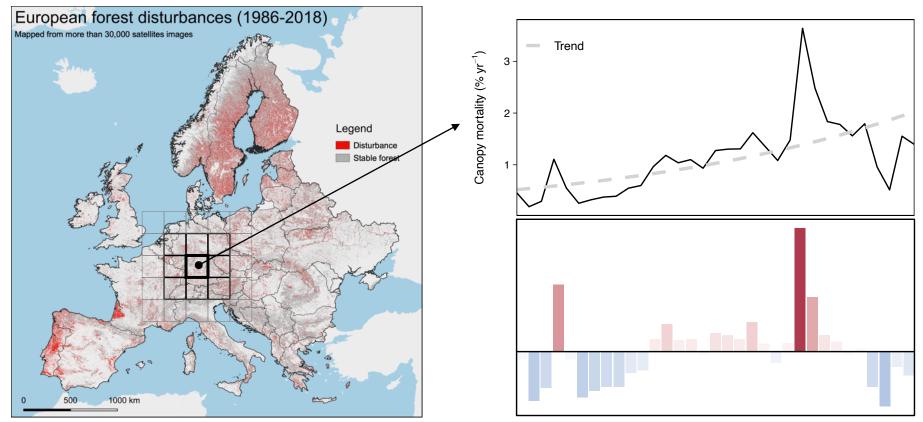
We use 30 m resolution forest disturbance maps covering the period 1987 to 2016 and created from Landsat satellite data in a previous study (Senf and Seidl, *in revision*).

٠

٠

We overlaid a 0.5° grid and aggregated the disturbance maps to annual canopy mortality rates per grid cell.




Fig. 1: Annual forest disturbance maps from Senf and Seidl (*in review*)

We use 30 m resolution forest disturbance maps covering the period 1987 to 2016 and created from Landsat satellite data in a previous study (Senf and Seidl, *in revision*).

٠

٠

- We overlaid a 0.5° grid and aggregated the disturbance maps to annual canopy mortality rates per grid cell.
- For each grid cell we calculated the trend in canopy mortality rates.

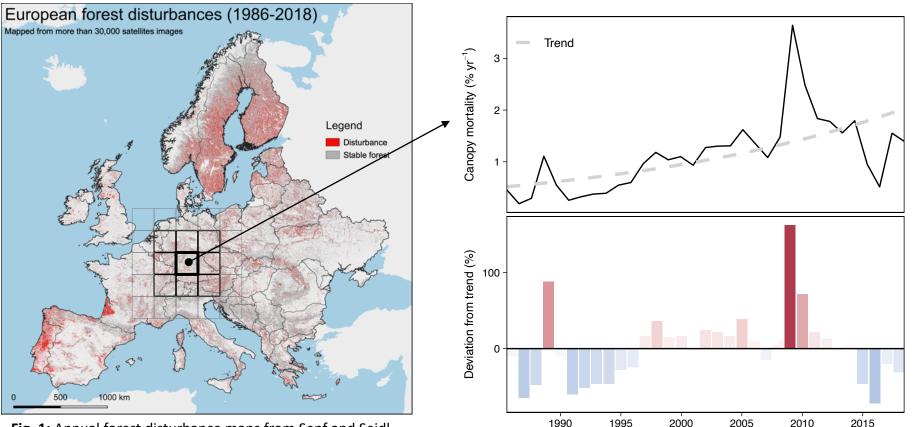


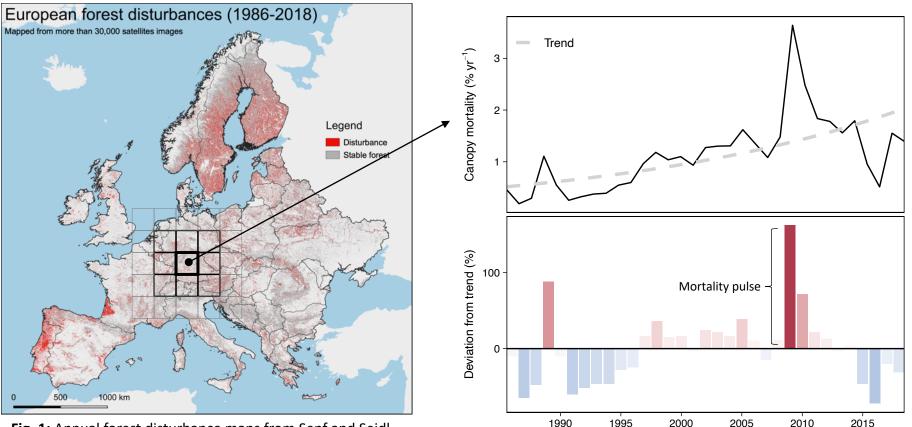
Fig. 1: Annual forest disturbance maps from Senf and Seidl (*in review*)

We use 30 m resolution forest disturbance maps covering the period 1987 to 2016 and created from Landsat satellite data in a previous study (Senf and Seidl, *in revision*).

٠

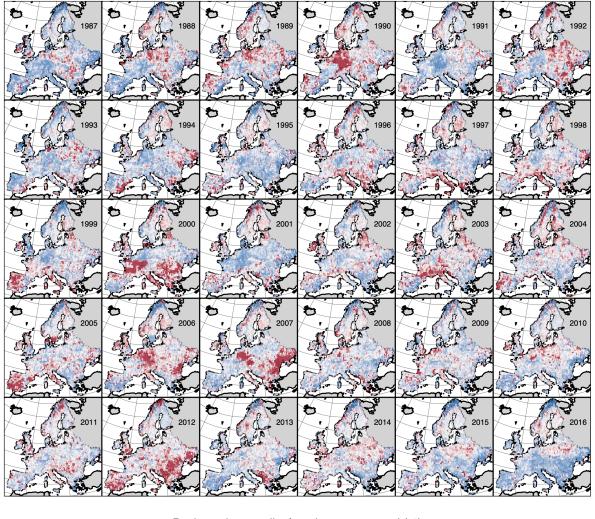
- We overlaid a 0.5° grid and aggregated the disturbance maps to annual canopy mortality rates per grid cell.
- For each grid cell we calculated the trend in canopy mortality rates.
- We derived the residuals as measure of excess (red) and deficit (blue) mortality.

Year

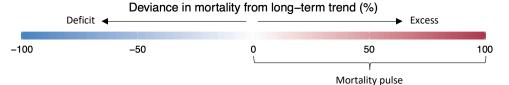

Fig. 1: Annual forest disturbance maps from Senf and Seidl (*in review*)

We use 30 m resolution forest disturbance maps covering the period 1987 to 2016 and created from Landsat satellite data in a previous study (Senf and Seidl, *in revision*).

٠


٠

- We overlaid a 0.5° grid and aggregated the disturbance maps to annual canopy mortality rates per grid cell.
- For each grid cell we calculated the trend in canopy mortality rates.
- We derived the residuals as measure of excess (red) and deficit (blue) mortality.
- A mortality pulse was finally defined as a grid cell and year with excess mortality compared to the long-term trend.



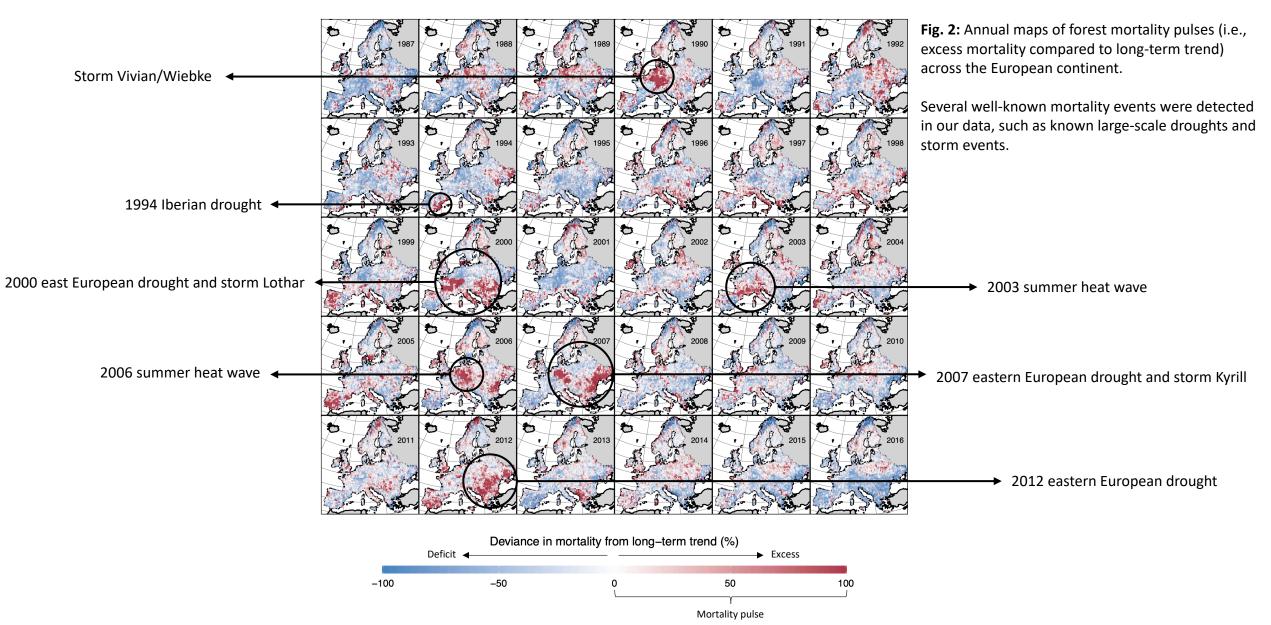
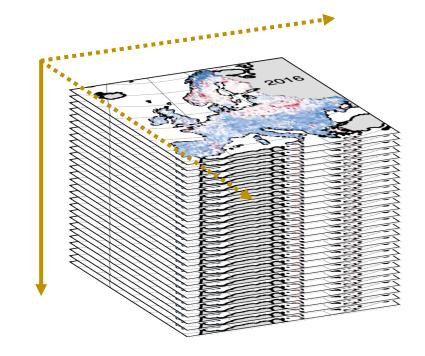

Year

Fig. 1: Annual forest disturbance maps from Senf and Seidl (*in review*)


Fig. 2: Annual maps of forest mortality pulses (i.e., excess mortality compared to long-term trend) across the European continent.

We related mortality pulses to three drought indices: Climate water balance (CWB), precipitation deficit (PREC) and vapor pressure deficit (VPD). We used a hierarchical Bayesian model, allowing for spatial variation in estimates among grid cells.

٠

$$\sqrt{pulse_{it}} = (\alpha_0 + \alpha_i) + (\beta_0 + \beta_i) * drought_{it} + \epsilon_{pulse} \text{ Temporal effect of drought on pulses}$$

$$\epsilon_{pulse} = N(0, \sigma^2) \text{ Unobserved variation} \qquad i = \text{grid cell}$$

$$\binom{\alpha_i}{\beta_i} = \text{MVN}(0, \Sigma_t) \text{ Variation among grid cells}$$

• We related mortality pulses to three drought indices: Climate water balance (CWB), precipitation deficit (PREC) and vapor pressure deficit (VPD). We used a hierarchical Bayesian model, allowing for spatial variation in estimates among grid cells.

٠

We found a robust and consistent relationship between all three drought indices and pulses of tree mortality, with highest association using average drought values between Match and July (June for VPD).

Drought index	Effect size (95% CI)	R ² (95% CI)	Observation period
CWB	-0.04 (-0.04 – -0.04)	0.13 (0.13 – 0.15)	March to July
PREC	-0.03 (-0.03 – -0.04)	0.13 (0.13 – 0.14)	March to July
VPD	0.03 (0.03 – 0.04)	0.13 (0.13 – 0.13)	March to June

Tab. 1: Average effect of the three drought indices on pulses of tree mortality.

- We related mortality pulses to three drought indices: Climate water balance (CWB), precipitation deficit (PREC) and vapor pressure deficit (VPD). We used a hierarchical Bayesian model, allowing for spatial variation in estimates among grid cells.
 - We found a robust and consistent relationship between all three drought indices and pulses of tree mortality, with highest association using average drought values between Match and July (June for VPD).

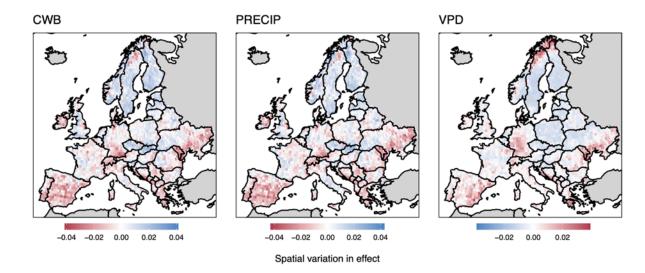
٠

 We estimate that under strong drought (two standard deviations above normal), tree mortality increases on average by 14 % compared to the long-term trend.

Drought index	Effect size (95% CI)	R ² (95% CI)	Observation period
CWB	-0.04 (-0.04 – -0.04)	0.13 (0.13 – 0.15)	March to July
PREC	-0.03 (-0.03 – -0.04)	0.13 (0.13 – 0.14)	March to July
VPD	0.03 (0.03 – 0.04)	0.13 (0.13 – 0.13)	March to June

Tab. 1: Average effect of the three drought indices on pulses of tree mortality.

We related mortality pulses to three drought indices: Climate water balance (CWB), precipitation deficit (PREC) and vapor pressure deficit (VPD). We used a hierarchical Bayesian model, allowing for spatial variation in estimates among grid cells.


٠

٠

- We found a robust and consistent relationship between all three drought indices and pulses of tree mortality, with highest association using average drought values between Match and July (June for VPD).
- We estimate that under strong drought (two standard deviations above normal), tree mortality increases on average by 14 % compared to the long-term trend.
- However, the effect size varied among grid cells, with several regions showing a substantially higher sensitivity of tree mortality to drought (e.g., Iberian peninsula).

Drought index	Effect size (95% CI)	R ² (95% CI)	Observation period
CWB	-0.04 (-0.04 – -0.04)	0.13 (0.13 – 0.15)	March to July
PREC	-0.03 (-0.03 – -0.04)	0.13 (0.13 – 0.14)	March to July
VPD	0.03 (0.03 – 0.04)	0.13 (0.13 – 0.13)	March to June

Tab. 1: Average effect of the three drought indices on pulses of tree mortality.

Fig. 3: Spatial variation in effect size. Reddish colors indicate a stronger effect of drought on mortality pulses.

Summary

- (1) We present a novel yet simple approach of quantifying pulses of tree mortality from satellite-based forest disturbance maps.
- (2) We show that across continental Europe there were several large-scale pulses of tree mortality over the past three decades.
- (3) While some of the pulses are clearly unrelated to drought (e.g., storm events), there is a continentalscale consistent relationship between drought and pulses of tree mortality.
- (4) However, there is wide spatial variation, with some regions characterized by a particular sensitivity of tree mortality to drought. Those include, among other, the Iberian peninsula, the Alps, and eastern/south-eastern Europe.

A consistent link between drought and pulses of tree mortality across Europe

Cornelius Senf

Ecosystem dynamics and forest management group, Technical University of Munich, Germany

Mail: cornelius.senf@tum.de Web: www.corneliussenf.de and www.edfm.wzw.tum.de : @corneliussenf

