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Our data consists of a three component seismograms from
1990 to 2019 recorded at AQU (42.354, 13.405) station near
city of L’Aquila, central Italy.

Main study focus is LAquila earthquake (Mw 6.3) that
occurred on April 6th 2009, 01:32 UTC right beneath the city
of L’Aquila (Abruzzo region).

There have been several main shocks with an aftershock
sequences.

The existence of continues records for an extended period of
time and the seismically active study area are perfect for
studying sesional and tidal effects on the local seismicity.

Chiaraluce et. al., 2011



https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2011JB008352
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INTRODUCTION @

To study the sesional effects on the local seismicity we need to extend near fault earthquake (EQ)
catalog. I

We want to develop the CNN model that recognise if something is an EQ and whether it is a
local EQ.
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DATA PREPARATION o

The input catalogs are INGV, Valoroso et. al., USGS (for M>4.5).

Only those events with SNR > 2 were accepted and this left us with 65 865 events.

Log Epicentral
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oMol Time evolution of the accepted events

Station AQU was not recording.
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http://www.ingv.it/it/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrb.50130
https://earthquake.usgs.gov/earthquakes/search/

DATA PREPARATION

The input catalogs are INGV, Valoroso et. al., USGS (for M>4.5).
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Only those events with SNR > 2 were accepted and this left us with 65 865 events.
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http://www.ingv.it/it/
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrb.50130
https://earthquake.usgs.gov/earthquakes/search/
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DATA PREPARATION

For all 65 865 events we extracted
25-s-long EQ event windows.

We also extracted 65 865 25-s -long
windows that do not contain EQ

| | | events - the noise events.
Epicentral distance: 8.17km, Magnitude: 2.7
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MODEL DEFINITION
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Following the statement: We want to develop the CNN model that recognise if something is an

EQ and whether it is a local EQ.

State of art
Perol et. al, 2018
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Can we elaborate those studies? _
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Output class scores: 1 “no event”, 50 distance, 20 magnitude, 20 depth, 36 azimuth



https://pubs.geoscienceworld.org/ssa/srl/article-abstract/90/2A/517/568771/An-Investigation-of-Rapid-Earthquake?redirectedFrom=fulltext
https://advances.sciencemag.org/content/4/2/e1700578
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Following the statement: We want to develop the CNN model that recognise if something is an
EQ and whether it is a local EQ.

We worked on two models.

The CNN detector

The CNN model that is able
to differentiate between the
EQ event window and the
noise window.

Two classes: earthquake and noise.

The CNN classifier

The CNN model that is
able to classify the EQ
event windows based on
their epicentral distances
and magnitudes.

Two classes: epicentral
distance and magnitude.
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FINDING THE BEST MODEL - TESTING @

There were three sections of the performed tests:

1. Which is the best model?

How many subclasses should the CNN classifier have? Two The tests were performed
classes for the epicentral distance and the magnitude or by dividing the dataset in
three classes? Three classes for the epicentral distance and three parts:

only two for the magnitude.
Training 80%

Validation 10%

2. The data normalisation

L L "
Which is the best normalisation for our dataset” Evaluation 10%

3. The hyperparameters of the the CNN model

We will focus further only on these tests...

(omom 9




000000
TESTED HYPERPARAMETERS
Number of the ..
Description Parameters
parameters to test
) The number of neurons or the architecture of the model (kernel
2 . . . ¥ 2 models
size, pooling, stride, number and type of layers)
Fixed ¥ The activation functions ) The sigmoid for the dete(.:’For ana
the softmax for the classifier
2 ¥ Optimisation algorithms Y SGD and ADAM
» The learning rate and the momentum of the optimisation ) Learning rate = [0.0001, 0.01]
4 .
algorithms Momentum = [0.2, 0.9]
2 > The mini batch size > N=128,512
e $ The number of epochs > Early stopping with patience of

50

There has been 275 = 32 preliminary tests based on the grid search for the two CNN
models: the detector and the classifier.

e '
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TESTED HYPERPARAMETERS - 2 MODELS
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32 channel
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l 3rd fully connected layer + sigmoid/softmax

IN: 100 features
OUT:

(CMom

1 595 729 trainable weights

The first model
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3rd conv. + reL,U
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The second model
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4th conv. + reLU
5th conv. + relLU

6th conv. + reLU
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THE DETECTOR RESULTSEALL TESTS
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The best model is for test 12.
The loss validation is 0.00036.
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The accuracy validation is 0.99992.

—e— Accuracy Training
—e— Accuracy Validation

5 10 15 20 25 30
Tests

The most combinations of the parameters
generate models with very high accuracies
(> 98%). The parameters are less relevant.

5 10 15 20 25 30
Tests



MONIFAULTS

0000000 N

R
THE DETECTOR RESULTS|TEST 12 %
0.040- — 1.0000 NS VAV T .
ooss| | Earlystopping | T CEUNT | osers| |7 % Hyperparameters
0.030- 0.9950- , Model First one
0.025- 0.9925- Opt. algorithm | Adam
0.020- 0.9900- Learning rate 0.01
0.015- 0.9875 - Momentum 0.9
0.0107 0.9850 Batch size 512
0.005 - 098254 —— Accuracy training
00001 AW AANA MWL AL L AL —— Accuracy validation
0 20 40 60 80 100 0980078 20 40 60 80 100 - -
Epochs Epochs Confusion matrix
7000
6000
Testing the selected model 12 on the evaluation 5000
data (data that model has never seen before) and _
accuracy Is still 100%. # : o
= - 3000
The model is capable of differentiating between ional- 2000
the earthquake and the noise event windows. 1000

@ nolise signal
L@_H 13 Predicted label



THE CLASSIFIER RESULTS

First, we choose to work with the CNN model that classify the EQ events windows
into two subclasses for epicentral distance and two subclasses for magnitude.

Bl <10 km e <?
<10 km
B >10 km Bl >4
>10 km

>4

Epicentral distance Magnitude
1 subclass < 10 km <4
2 subclass > 10 km > 4
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THE CLASSIFIER RESULTS

The minimum loss value is achieved for test 10. The maximum accuracy values is achieved for test 25.
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Loss Validation Accuracy validation The parameters are more
Test 10 0.96097 0.91750 relevar:t when |t_comes to the
models’ accuracies, due to the

Test 25 0.27458 0.26297 fact that the classification

problem is more complex than
() _® the detection problem.
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THE CLASSIFIER RESULTSRTEST 10
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THE CLASSIFIER RESULTSREVALUATION

For the test 10
the change in
the optimisation
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The epicentral distance accuracy for
first 9 tests is unstable and after it
stabilises around 90%.

The magnitude accuracy for all tests
is around 90%.

For individual test 10 the model is
able to separate between the two
epicentral classes successfully.

For the magnitude classes model
from test 10 is able to differentiate
all events with magnitude < 4. For
events with magnitude >4 the
accuracy is 63%.
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CONCLUSIONS - SUMMARY OF ALL TESTS

T = training e Thedetector & Theelassifier |

V = validation . Tests | Models | TlLoss | VLoss T Acc V Acc T Loss V Loss TAcc | VAcc Opt. Learning rate . Momentum | Batch size
1 #1 . 7.31e-01 | 6.93e-01 | 0.00e+00 | 5.16e-01 091 | 090 | 08 | 082 SGD 1E-04 0.2 128
""""" > |\ #1 | 694e-01 | 693-01 | 500e01 | 51801 | 109 | 09 | o077 | o8 | seD |  1EO04 i 02 i 512
""""" 3 |  #1 | 35206 | 18303 | 1.00e+00 | 999%01 | o8 : 091 | o8 08 | sesO i  1E04 . 09 i 128
""""" 4 M 140004 | 328603 | 1.00e+00 | 99%e-01 | o8 | o0seo | os : os | sep i 1eos o s T
""""" 5 | #1 | 82306 | 812-04 | 1.00e<00 | 99901 | 104 | 09 | o078 | o8& | s |  1EO2 i 02 i 128
""""" 6 | #1 | 486e-04 | 3586-03 | 1.00e+00 | 99801 | o091 | 09 | o8 : o8 | s | €O i 02 i 512
""""" 7 0 # | 14704 | 154608 | 100e+00 | 99%-01 | 027 | o027 | o0& | oe1 | se |  1E02 | 09 i 128
""""" 8 | #1 | 148605 | 271e-03 | 1.00e+00 | 999%01 | 104 | o091 | o076 | o8& | s |  1EO2 i o098 i 512
""""" O |  #1 | 000e+00 | 1.04e-03 | 100e+00 | 999%-01 | 020 | 027 094 : o091 | ADAM i  1E04 i 02 i 18
"""" 10 | # | 714e-05 | 2226-03 | 1.00e+00 | 99901 | o021 | o026 | o094 | o092 | aApAM |  1E04 | 02 |  s12
11 1 #1 | 542e06 | 321e03 | 100es00 | 9.99-01 | 023 : 027 i 09 : o092 | ADAM | 1E04 i 09 i 128
"""" 12 | #1 | 000e+00 | 3.64e-04 | 1.00e+00 | 1.00es00 | 010 | o027 i o097 | 092 | ADAM |  1E-04 . o098 i  sB12
"""" 13 | #1 | 206608 | 131e02 | 100e+00 | 997¢01 | 0238 | o030 | 0% : 08 | ADAM |  1E02 | 02 | 18
""""" 14 | #1 | 157e04 | 217e03 | 100e+00 | 999%-01 | 021 | o027 i o091 . o091 | aAAM |  EO2 i 02 i 512
""""" 15§ #1 | 000e+00 | 210e-02 | 100e+00 | 9.04e-01 | o036 | o027 | oss | oe1 |  apAam | 1eo02 i oe i
"""" 16 |  # | 000e+00 | 1.986-03 | 1.00e<00 | 999¢-01 | o044 | o027 | 08 | 092 | ADAM |  1E02 | o9 | s12
""""" 17 | # | 600e05 | 964e-03 | 100e+00 | 995¢-01 | 025 | o031 | o092 . oot | seO | = 1EO4 i 02 i 128
""""" 18 | #2 | 000e+00 | 1.09e-02 | 100e+00 : 995601 | o023 | o030 | oe4 | oe1 |  se0 |  1E0sa | 02 sz
"""" 19 | #2 | 804607 | 8856-03 | 1.00e+00 | 99701 | o013 | o029 | o9 : oot | seD |  1E04 i 09 | 18
"""" 20 |  # | 000e+00 | 9.01e-03 | 1.00e+00 | 996e01 | o017 : o020 | 093 | o092 | s i = 1EO04 . 09 i 512
""""" 21 | #2 | 417605 | 964e-03 | 1.00e+00 | 995e-01 | o024 i 031 | o9 : oo | sep | qeoe oo i
"""" 20 | # | 000e+00 | 6.73¢-03 | 1.00e+00 | 996e-01 | 024 < o020 | o095 | o091 | seO | €02 | 02 i 512
"""" 23 | # | 000e+00 | 3.50e-03 | 1.00e+00 | 99801 | 023 : o028 | oo1 | o092 | s i = 1EOG2 . 09 i 128
""""" 24 #2 0008400 | 1136-02 | 1.00e+00 | 997e-01 | o022 : o029 | o094 : oo | sep | qeoe o s T
"""" 25 | #2 | 349e-05 | 9.76e-03 | 1.00e+00 | 996e01 | o018 | 027 | o094 : o092 | ADAM |  1EO04 i 02 i 128
"""" 26 |  #2 | 142e-05 | 7.30e-03 | 1.00e+00 | 997e01 | o023 . 030 | 093 : o091 | ADAM 1EO4 i 02 i 512
""""" 27\ 42 120603 | 5686-03 | 100e+00 | 998e-01 | 031 | o028 | o090 | o092 | ApAM i Eoa o Ui T
"""" 28 |  #2 | 3.786-04 | 6256-03 | 1.00e+00 | 995¢01 | o020 | 031 | o095 | oot | ADAM |  1EO04 i 09 i 512
"""" 20 |  # | 000e+00 | 9.68e-03 | 1.00e+00 | 99501 | o028 < o028 | 08 | 09 | ADAM i  1EO2 . 02 i 18
"""" 30 |  #2 | 1024e-05 | 870603 | 100e+00 | 997¢01 | 020 | o032 | o091 | o8 | ADAM |  1E02 | 02 i  s12
31 0 #2 | 000e+00 | 1.17e-02 | 1.00e+00 | 9.88e-01 | 024 028 : 090 : o091 | ADAM i 1E02 i 08 i 128

L@-B% . 32 | #2 | 000e+00 | 7.02¢-03 | 1.00e+00 | 9.98e-01 | 017 | 030 | 092 : oo | ADAM | 1E02 i 09 - 512 18
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CONCLUSIONS @

We performed an extensive and rigorous study on the parameters’ tuning for the two
different CNN models, which gives us a starting point to better understand the advantages
and disadvantages of these models used in the seismological community.

We succeeded in training the CNN model to successfully differentiate between the
earthgquake and the noise event windows.

We also succeeded in training the CNN model to classify earthquakes based on two
labels: the epicentral distance and the magnitude.

Using our models we should be able to detect new events in the continuous data and
successfully label them as local earthquakes.
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