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Abstract

The characterization of spatial variations in soil properties and crop performance
within precision agriculture, and particularly the delineation of management zones (MZ)
and sampling schemes, are complex assignments currently far from being resolved.
Considerable advances have been achieved regarding the analysis of spatial data, but
less attention has been devoted to assess the temporal asymmetry associated with vari-
able crop × year interactions. In this case-study of a 9 ha field located in Spain, we
captured interactions between both spatial and temporal variations for two contrast-
ing seasons of remotely sensed crop data (NDVI) combined with several geomorpho-
logical properties (i.e., elevation, slope orientation, soil apparent electrical conduc-
tivity - ECa, %Clay, %Sand, pH). We developed an algorithm combining Principal
Component Analysis (PCA) and clustering k-means and succeeded to delineate four
MZ’s with a satisfactory fragmentation degree, each one associated with a different
Elevation × ECa × NDV I combination. Simulated yield maps were generated us-
ing NDVI maps correlated to ground cover to establish initial conditions in simulation
settings with a crop model. Yield maps were spatially correlated but fitted into var-
iograms with irregular spatial structure. Both CV and spatial patterns did not show
consistency from year to year. The results indicate that MZ’s temporal instability is an
important issue for site-specific management as agronomic implications varied greatly
with crop × year setting. We observed differences, not only regarding NDVI patterns
but also in yield response to the combination of Elevation × ECa (and Texture) de-
pending on the seasonal rainfall. A reduction of 14% of the ’Goodness of Variance
Fit’ was observed for simulated yield from the first to the second crop × year, high-
lighting the difficulties in the delineation of MZ’s with persistent confidence. The in-
terpretation of MZ × Y ield associations was not straight forward from the metrics
selected here as it also depended on agronomic knowledge. We believe that precision
agriculture will benefit greatly from improved protocols for MZ delineation and sam-
pling schemes. However, the uncertainty associated with temporal asymmetry of yield
clustering and MZ’s interpretation reveals that ‘automated digital agricultural systems’
are still far from reality.1

1Copy right statement: All rights are reserved but the authors grant Copernicus Meetings the right to hold this presenta-
tion material online for viewing and download by individuals.
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1 Introduction

The characterization of spatial variation within
precision agriculture, and particularly the delin-
eation of management zones (MZ), is a com-
plex assignment and it has been a point of dis-
cussion for many (Crawford et al., 1997; Moral
et al., 2010; Milne et al., 2012; Schemberger
et al., 2017). One of the most common ap-
proaches used for MZ delineation is the recog-
nition of homogeneous groups in spatial data us-
ing cluster analysis. However, this is far from
being straightforward because the outcomes can
be strongly affected by biased considerations and
the methods used to select explanatory variables
have not been standardized in literature (Leroux
and Tisseyre, 2019). In this context, the delin-
eation of MZ and sampling schemes is not a sim-
ple task, mostly when spatial patterns of crop
performance are strongly affected by crop×year
interactions.

Our objective was to conduct a clustering
analysis on a crop × year contrasting data-
set, typically observed in annual cropping rota-
tion schemes, to measure spatial variation and
to discuss the uncertainties associated with un-
stable temporal-spatial correlations. The algo-
rithm code (R-studio V3.6) is entirely avail-
able at https://github.com/RoquetteTenreiro/MZ/
blob/master/script.md, as well as input and out-
put data.

2 Materials & Methods

The experimental field, located in Córdoba,
southern Spain (Mediterranean climate), is char-
acterised by an expansive clay vertisol, 1.2-1.6
m depth and decent water storage capacity (i.e.
> 0.14 cm3 cm−3). An area of 9.5 ha was de-
lineated from a flow direction raster obtained
with the SAGA - Wang Liu algorithm (Wang
and Liu, 2006), from a DEM with 5 m spa-
tial resolution collected with LiDAR and avail-
able at CNIG (http://centrodedescargas.cnig.es/
CentroDescargas/index.jsp).

In order to capture interactions between spa-
tial and temporal variability (Mulla and Schep-
ers, 1997), two contrasting seasons of crop data
were combined (i.e. winter wheat in 2017/18
and rapeseed in 2018/19), the first characterised
by a satisfactory rainfall supply (>600 mm), the
second by water shortage (<400 mm with 80%
falling in early autumn). NDVI’s of late phe-
nological vegetative and flowering stages (Cat-
tani et al., 2017; Scudiero et al., 2014), were es-
timated from atmospherically corrected satellite
data, with cloud cover <4%, downloaded from
https://apps.sentinel-hub.com/.

An electromagnetic induction sensor was
used to measure soil ECa (dS m−1) at 35 and
85 cm depth and with a spatial resolution of
1x15 m (Johnson et al., 2001), performed before
sowing date and four days after a rainfall event
of approximately 10 mm (McCutcheon et al.,
2006). Soil samples (%Clay, %Sand, pH) were
collected at 35 cm depth in ten point-sites ac-
cording to the ECa pattern.

Within-field spatial co-variation was ac-
cessed with Principal Component Analysis
(PCA), correlated principal components were
selected (i.e. Elevation, deep ECa, and NDVI
at specific dates), and a k-means clustering was
applied by setting an optimal amount of three
clusters according to Rousseeuw (1987) and Tib-
shirani et al. (2001). Means and standard devi-
ations were estimated for each variable within
each MZ as well as the ’Goodness of Variance
Fit’ (GV F ).

Moran’s I method and Z-scores (Bi-
vand and Wong, 2018) were estimated for
yields simulated with AquaCrop V6.1. The
simulations were conducted under a stan-
dard crop parameterization for a typical
clay soil (single horizon, 1.4 m depth), us-
ing weather data obtained from https://www.
juntadeandalucia.es/agriculturaypesca/ifapa/
ria/servlet/FrontController?action=Static&url=
coordenadas.jsp&c provincia=14&c estacion=6
and considering different initial conditions ac-
cording to the relations between NDVI and
canopy cover reported by Goodwin et al. (2018),
Han et al. (2017) and Luo et al. (2015). An analy-
sis of spatial autocorrelation was also conducted
to measure simulated yield spatial dependence.

3 Results & Discussion

The algorithm delineated three MZ’s, each one
associated to a different Elevation × ECa ×
NDV I combination. The GV F values were
higher than 50% for all principal components
and, despite being slightly lower than values
reported in other studies (Peeters et al., 2015;
Scudiero et al., 2018), most variables had GV F
comprehended in acceptable ranges.

According to Anselin (1995); Bivand and
Wong (2018) and Kalogirou (2019), the results
obtained from Moran’s I method (Iindex = 0.91
and Zscore = 72.3) were satisfactory too. Sim-
ulated yields were spatially correlated but fitted
into variograms with irregular spatial structure
according to Leroux and Tisseyre (2019). Both
yield CV and spatial patterns did not show tem-
poral stability.

The euclidean space represented in the PCA
plot indicated that deep ECa was better corre-
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lated to NDVI than superficial ECa, which is in
line with the principle that rainfed crops in our
conditions, depend largely on the water availabil-
ity at deeper soil layers during critical periods of
stress (i.e. flowering and fruit development). The
correlation was positive in 2019 but negative in
2018. These contrasting correlation signals can
be explained by differences in accumulated rain-
fall between both years. Under a wet spring,
the winter wheat crop has responded better on
higher elevations (and lower ECa) due to runoff,
and worse in lower zones due to water saturation.
The opposite relation was observed for 2019 un-
der water shortage. Such dynamics are consis-
tent with those reported by Kravchenko and Bul-
lock (2000). The water shortage in 2019 sug-
gested a higher degree of crop spatial hetero-
geneity, but results are inconclusive as differ-
ences can be associated to the crop species.

We highlight that MZ’s temporal instability
is an important issue for site-specific manage-
ment as agronomic implications varied greatly
with the crop × year setting. Under the same
combinations of Elevation× Texture×ECa,
both NDVI and crop yield patterns differed de-
pending on seasonal rainfall. A 14% reduction of
crop yield GV F was observed, from the first to
the second crop × year setting, which indicates
that site-specific management should not be con-
ducted with persistent confidence in the absence
of continuous evaluation and re-delineation of
MZ’s. Further research requires additional years
of observations, necessary to dissociate geophys-
ical and environmental effects from crop related
ones, which might allow us to better interpret the
temporal instability of crop spatial patterns.

The spatial interpretation of results was not
fully automated from the metrics proposed be-
cause it also depended on agronomic knowl-
edge. We believe that progress must be achieved
through development of crop simulation models
accessing within field spatial heterogeneity. The
success of precision agriculture will benefit from
improved protocols for MZ delineation and sam-
pling schemes and further coordinated research
is needed at variable spatial scales, empowering
stronger synergism between researchers, farmers
and sensing engineers.
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A Appendix

Figure 1: Visual outcomes: Maps of geomorphological properties (Elevation, Orientation, superficial ECa(1) and deep ECa(2),
respectively expressed in m, degrees and dS/m), maps of pH and texture (clay and sand content, both expressed in %), simulated
yield maps (expressed in Mg/ha), and the map of delineated Management Zones (MZ).
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