GNSS and VLBI integrated processing at the observation level

Jungang Wang^{1,2}, Kyriakos Balidakis², Maorong Ge^{1,2}, Robert Heinkelmann², Harald Schuh^{1,2}

jgwang@gfz-potsdam.de

- Technische Universität Berlin, Chair of Satellite Geodesy, Straße des 17. Juni 135, 10623 Berlin, Germany
 - 2. GFZ German Research Centre for Geosciences, Space Geodetic Techniques, Telegrafenberg, 14473 Potsdam, Germany

EGU 2020 4-8 May 2020

Outline

- Background and motivation
- Current status of the VLBI implementation
- Troposphere parameter bias between GNSS and VLBI
- Integration of VLBI INT sessions and GNSS PPP
 - Improving the UT1 estimates in VLBI Intensive (INT) sessions with the integration of GNSS Precise Point Positioning (PPP)
- Integration of VLBI CONT sessions and GNSS PPP
 - Improving coordinate estimates and EOP accuracy in Continuous (CONT) campaigns by ZTD tie, gradient tie, and local tie
- Conclusions and future work

Motivation: Space Geodetic Techniques

VLBI, GNSS, SLR, and DORIS are the four space geodetic techniques that determine the TRF, CRF, DRF, and EOP, which are supporting daily Positioning, Navigation and Timing.

Helmholtz-Zentrum

EOP: Earth Orientation Parameter; VLBI: Very Long Baseline Interferometry; GNSS: Global Navigation Satellite System; SLR: Satellite Laser Ranging; DORIS: Doppler Orbitography and Radio-positioning Integrated by Satellite

3

Motivation: Consistent Reference Frame

		GNSS	VLBI	SLR	
Quasar	Coordinate		Х		
Satellite	Orbit	Х	(X)	X Space	e Tie
	Polar Motion	Х	X	X	
EOD	Nutation	- 11-	X	EOP	Tie
EOP	EOP dUT1	Full E	X		
	LOD	Х	X	Х	
A transmission	Troposphere	Х	Х	Trop	. Tie
Aunosphere	Ionosphere	Х	Х		
Dessires	Coordinate	Х	Х	X Loca	l Tie
Receiver	Clock	Х	Х	Cloc	k Tie
Datum			Scale	Scale+Origin	

Only VLBI can determine the full EOP set and CRF; while GNSS has good geometry, global coverage with continuous observation.

Different techniques are connected by common parameters (EOP, satellite orbit, troposphere delay) or external measurement (local tie).

Helmholtz-Zentrum

Motivation: Multi-Technique Combination

Integrated processing of different techniques at the observation level provides the most rigorous consistent solution with all the possible ties available.

However, this integration can only be achieved within one software, which should be able to process all the techniques with state-of-the-art models.

Motivation: Our Goals

- One software to process all the four techniques
- Capable of generating FULL EOPs
- Enable to combine all space-geodetic techniques at the observation level (also NEQ level)
- Exploit features of different techniques
 - GNSS: dense network with continuous observation, good geometry
 - VLBI: full EOP set, space exploration
 - SLR: absolute accuracy, gravity field
- Investigate the possibility/problems in integrated processing

6

Current Status of VLBI Implementation

- Based on the PANDA platform
 - Positioning And Navigation Data Analyst (PANDA)
 - Real-time, post-processing
 - Orbit, Clock, ERP
 - Multi-GNSS, POD, PPP, LEO
- VLBI module
 - based on NGS card files
 - IERS consensus model
 - Integrated in LSQ estimator
 - Outlier elimination

Library	 Data structure Constants File reading/writing Math, etc
Modules	 Pre-processing Residual editing trs2crs Orbit/clock Ambiguity fixing
or Estimator least-squares	 Read GNSS/VLBI/SLR observation, local tie Compute O-C, partial derivatives Parameter estimation

Software structure

7

Current Status of VLBI Implementation

• VLBI data processing flowchat

Current Status of VLBI Implementation

• VLBI modeling

- Single-session processing achieved
- Long-term (global solution) in progress

Parameter	VLBI	GNSS
Polar Motion	C	offset+drift
UT1-UTC	offset+drift	drift
Nutation	offset(+drift)	
Source Coordinate	NNR/fix	
Station Coordinate	NNR/N	NT/NNS/fix/free
Clock (satellite/receiver)	polynominal (+RWK)	white noise/polynominal/RWK
Troposphere	P	PWC/RWK
Satellite orbit		dynamic parameters
Baseline clock	constant	

PWC: piece wise constant; RWK: random walk process NNR: no-net rotation; NNT: no-net translation; NNS: no-net scale

Troposphere Parameter: CONT Campaigns

- Processing the CONT05-CONT17 campaigns and PPP at co-located GNSS stations
 - To investigate the agreement of the troposphere parameters at these co-located stations
- The VLBI CONT campaigns

POTSDAN

 to acquire state-of-the-art VLBI data over a time period of about two weeks to demonstrate the highest accuracy

	Session Name	ID	Time	Comment
	CONT02		DOY 289-304, 2002	Not used
	CONT05	C05	DOY 256-269, 2005	C05B is used, TIGOCONC removed
	CONT08	C08	DOY 225-239, 2008	
	CONT11	C11	DOY 258-272, 2011	
	CONT14	C14	DOY 126-140, 2014	
	CONT17 Legacy-1	V17	DOY 332-346, 2017	VLBA network
G	CONT17 Legacy-2	C17	DOY 332-346, 2017	IVS network
				10

Troposphere Parameter: CONT Campaigns

VLBI CONT05-CONT17 campaigns

Troposphere Parameter: Data Processing

• Data processing at CONT sessions

	GNSS	VLBI
Mode	GPS-only PPP, daily solution	Single-session solution
Interval	300-sec LC+PC	All available X-band
Space Part	Orbit & clock fixed to GF2/GFZ product	Fixed to ICRF3xs
Receiver Part	Antenna PCO/PCV: IGS08/14 CODE DCB product	Antenna axis offset Antenna thermal deformation
Weight	Range: 1 m, phase: 0.02 cycle Elevation dependent	1 cm + observation noise Elevation dependent
Clock	White noise	Linear + RWK $(0.3mm/\sqrt{s})$
Coordinate	Freely estimated	NNR+NNT to ITRF2014
EOP		Full EOP estimation
Ionosphere	Eliminated by ionosphere-free combination	Corrected by S-band observation
Displacement	Solid earth tides, ocean tides (FES2004), p	oole tides, atmosphere loading

Troposphere Delay in GNSS and VLBI

- Troposphere delay modeling
 - A priori ZHD₀ and ZWD₀ from ECMWF (VMF3), thus the ZTD difference between GNSS and VLBI at co-located stations caused by the height difference are modeled in advance
 - Mapping function: VMF3

GF7

Potsdan

- ZWD residual estimated as PWC every 1 hour
- North and east gradients estimated as PWC every 3 hours

 $Trop = mf_h \times ZHD_0 + mf_w \times (ZWD_0 + dZWD) + mf_g \times (G_N \cos \alpha + G_E \sin \alpha)$

Trop: troposphere delay at signal transmitting path ZHD_0 : a priori zenith hydrostatic delay ZWD_0 : a priori zenith wet delay *dZWD*: residual zenith wet delay G_N, G_F : north and east gradients mf_h, mf_w : hydrostatic and wet mapping functions mf_g : gradient mapping function

dZWD is **NOT** correlated to the station height if the ZHD_0 and ZWD_0 are modeled properly, e.g., from ECMWF.

It can be constrained for colocated GNSS-VLBI stations.

Troposphere Parameter Bias: ZTD

STD of the VLBI-GNSS ZTD differences

Troposphere Parameter Bias: Gradients

RMS of the VLBI-GNSS gradient differences

Troposphere Parameter Bias: dZWD

MEAN and RMS of the VLBI-GNSS dZWD differences

Y-axis: MEAN (up) and RMS (bottom) of the dZWD differences

Troposphere Parameter Bias: dZWD

MEAN of the VLBI-GNSS ZTD and dZWD differences

Potsdam

GEMEINSCHAFT

Troposphere Parameter Bias: Gradient

• MEAN of the VLBI-GNSS gradients differences

Troposphere Parameter Bias

- Impact of the ZTD/gradient temporal resolution
 - ZTD/Gradients agreement not very sensitive to ZTD resolution
 - Gradients agreement improves as the gradient resolution increases
 - dZTD agreement achieves the best with 6-h gradient resolution

GFZ Y-axis: RMS value of the troposphere parameter differences between GNSS and VLBI Different colors represent different gradient temporal resolutions

• VLBI Intensive sessions

Helmholtz-Zentrum Potsdam

- 2/3 VLBI stations only; 1-hour session, 20-40 observations
- Rapid UT1 estimation and prediction
- Parameter: $1 \operatorname{clock} + 2 \operatorname{ZWD} + 1 \operatorname{UT1}$
- No gradients: biased UT1 estimates
- Improve VLBI using GNSS troposphere information

Session Time	VLBI	GNSS	
INT1 Weekday	Wettzell	WTZR	1.00
18:30-19	2:30 Kokee	KOKB	
INT2 Weekend	l Wettzell	WTZR	90° W
07:30-08	3:30 Tsukuba	TSKB	
INT3 Monday 07:00-08	Wettzell Kokee Ny-Ålesund		88 2

Nilsson, 2017, J Geod FMFINSCHAFT

20

• Different constraint applied to ZTD tie and Gradient tie

He

POTSDAM

- Data processing strategy:
 - VLBI single-session, GPS daily static PPP solution
 - Full EOP estimates in VLBI
 - A priori ZHD&ZWD from ECMWF(VMF3) for GNSS and VLBI
 - Residual ZWD estimated as PWC, and tied between GNSS and VLBI with a constraint of 0.1 mm
 - Gradients estimated as PWC, and tied between GNSS and VLBI with a constraint of 0.01 mm
 - Local tie applied using the constraint from sinex file
 - Use more than one co-located GNSS stations whenever possible
- Expected to see:
 - Better coordinate repeatability
 - Improved EOP accuracy

• Coordinate repeatability: troposphere tie

GEMEINSCHAFT

VLBI: up subplots; GNSS: bottom subplots

Helmholtz-Zentrum

POTSDAM

• Coordinate repeatability: local tie

• EOP accuracy of all CONT sessions: Polar Motion

• EOP accuracy of all CONT sessions: UT1 and Nutation

Conclusions and future work

- The VLBI module is fully implemented in the PANDA software and the integration with GNSS is ready
- The troposphere parameters show good agreement at co-located GNSS and VLBI stations
- By integration of VLBI INT sessions and GNSS PPP, the UT1 estimate is improved in terms of LOD
- Both coordinate repeatability and EOP accuracy are improved in CONT sessions by applying GNSS PPP, due to the troposphere tie and local tie
- Next step
 - Integration of VLBI CONT sessions with GNSS POD
 - Implementation of the SLR module

Thanks for your attention

