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Motivation and objective
I So far only the l1-norm, the l2-norm or a mixed of both

([Freitag, Nichols e Budd 2013]) have been used as penalty
function for the formulation of the 4DVAR objective function
(to take into account the sparsity of the variables encountered
in Data Assimilation).

I However the l2 − norm tends to "oversmooth" the solution
and the l1 − norm tends to "oversparcify" it. Can we make a
compromise between the 2 ?

I Moreover, while a l2-norm penalization in the 4DVAR
objective function can be statistically interpreted as a Gaussian
distribution of the errors, data can better follow a generalized
Gaussian distribution ([Asadi, Scott e Clausi 2019]).

Objective
Show the benefits of using a lp-norm with 1 < p < 2 on a data
assimilation example.
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Formulation of the problem
The objective function to minimize take the following form :

arg min
ξ

1
2
‖ Aξ − b ‖22 +

λ

p
‖ ξ ‖pp = arg min

ξ
Ωp(ξ, b, λ) (1)

Where we set

A =

(
R− 1

2 Ĥ

B− 1
2

)
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(
R− 1

2 y

B− 1
2 x0b

)
, (2)

with
I R and B the covariance matrix of the observations and the background

respectively
I Ĥ is the linearization of the observation operator
I x0b is the background vector and y the observations vector

Sparcity will be expected on the derivative of the variable, hence ξ = Φu with
Φ an operator of (numerical) derivation :

Φ =


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. . .
. . .

. . .
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 (3)



Minimization algorithm

To minimize (1) we used the algorithm proposed in
[Bonesky et al. 2007]. Indeed, we obtained faster convergence with
this algorithm rather than with a plain gradient descent. One
iteration is done in two steps :{

ξ∗k = jp(ξk−1)− µk∇Ωp(ξk−1, b, λ).
ξk = jq(ξ∗k).

(4)

where
I jp : Rn → Rn is the so-called "duality map", which is the

derivative of ξ → λ
p ‖ ξ ‖

p
p and whose expression is here

reduced to
jp(ξ)i = |ξi |p−1sign(ξi ) (5)

I q is such that 1
p + 1

q = 1



Choice of the regularization parameter λ

This choice is based on Morozov’s discrepancy principle
[Anzengruber e Ramlau 2009-2013]. Let τ ≥ 1 and
bno−noise ∈ rg(A) be the data without noise. For δ > 0 and with
‖ b − bno−noise ‖≤ δ, we chose the regularization parameter λ > 0
if there exists ξδλ such that:{

ξδλ = arg minξ Ωp(ξ, b, λ)
‖ Aξδλ − b ‖22≤ τδ.

(6)

In practice we compute λ by backtracking : since λ→‖ Aξδλ − b ‖22
is increasing, we start with a λ0 and update λk+1 = 0.8λk as long
as (6) is not fulfilled.
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Studied problem

The experiment consist in retrieving the initial condition, given
noisy observations and a background information, of the following
1D-advection problem :

∂tu(s, t) + c∂su(s, t) = 0
u(s, t0) = u0(s)

u(0, t) = u(L, t) = 0
(7)

with c = L = 1



Perfect VS Imperfect
We discretize the equation 7 using the Lax-Wendroff scheme
([Lax e Wendroff 1960]). By writing ∆t and ∆x the time and
space steps of the discretization, this numerical model give rises to
implicit diffusion when µ = c ∆t

∆x < 1 and will modify the sparcity of
the variables as time goes by, as shown below

Figure 1:



Sparse VS Almost Sparse

We also consider two types of initial condition : a sparse and an
"almost sparse" one. Below is example of noisy measurements
taken for each case. Note that the sparcity concerns the derivative
of the variables.



Summary of the problem

We then investigate 4 cases : with a sparse initial condition and
with and almost sparse one, with µ = 1 (called "perfect scenario")
and with µ = 0.5 ("imperfect scenario").
To palliate the randomness that takes place in the experiments
(when creating the background and the observations data), we
perform a minimization of the objective function 20 times for each
case and we report the mean of the RMSE and MAE.
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Sparse scenario

B R background 4DVAR 4DVAR,1 4DVAR,1.2 4DVAR,1.5 4DVAR,2

0.1I 0.1I Sparse RMSE 0.2886 0.2427 0.1153 0.1667 0.1834 0.2063
RMAE 0.4231 0.3530 0.1672 0.1980 0.2050 0.2343

Al. sparse RMSE 0.2809 0.2388 0.1191 0.1370 0.1438 0.1568
RMAE 0.3727 0.3119 0.1496 0.1771 0.1738 0.1845

0.01I 0.1I Sparse RMSE 0.0901 0.0878 0.0748 0.0636 0.0804 0.1017
RMAE 0.1331 0.1296 0.1089 0.0636 0.0828 0.1124

Al. sparse RMSE 0.0875 0.0853 0.0742 0.0615 0.0668 0.0766
RMAE 0.1174 0.1144 0.0983 0.0717 0.0694 0.0819

0.1I 0.01I Sparse RMSE 0.2869 0.2014 0.2210 0.1141 0.1310 0.1475
RMAE 0.4254 0.2619 0.3621 0.1028 0.1147 0.1393

Al. sparse RMSE 0.2715 0.1904 0.2148 0.0852 0.0884 0.0973
RMAE 0.3568 0.2233 0.3227 0.1044 0.0956 0.1059

Table 1: Perfect model scenario : RMSE and MAE related to the sparse and almost
sparse cases experiments. The best result for each row is underlined.

When uncertainty increase, the lp-norms (p = 1.2 and p = 1.5 give better
results.



Sparse scenario

Figure 2: Distribution of the RMSE and MAE of 20 experiments for the
perfect scenario and R = 0.1 ; B = 0.1. On the left : the almost sparse
case ; on the right : the sparse case. The almost sparse case "gathers"
the points to the benefits of the lp-norm.



Sparse perfect scenario

Figure 3: The different solutions to the minimization of the different
objective function. Oscillations increase as p increase.



Sparse imperfect scenario

t = 0 t = 0.025 t = 0.05
RMSE MAE RMSE MAE RMSE MAE

imperfect 0 0 0.1526 0.0820 0.1841 0.1175
background 0.2943 0.4313 0.1947 0.2393 0.2112 0.2430

4DVAR 0.2746 0.3981 0.1738 0.1991 0.1930 0.2035
4DVAR,1 0.2431 0.3486 0.1734 0.1973 0.1931 0.2032

4DVAR,1.2 0.1195 0.1331 0.1876 0.1808 0.2119 0.2066
4DVAR,1.5 0.1454 0.1617 0.1946 0.1953 0.2154 0.2161
4DVAR,2 0.1754 0.2003 0.2037 0.2120 0.2202 0.2267

Imperfect model scenario: RMSE and MAE related to the sparse
case experiment. Underlined are the best results for each column.
While the l1.2−penalty lead to the better results for t = 0, the
model error tends to reduce the gap between the different
penalization as time goes by.



Almost sparse imperfect scenario

Figure 4: Imperfect model scenario: initial true state (black dotted line) and initial state obtained
minimizing Ω1 (blue line), Ω1.2 (red line), Ω1.5 (yellow line) and Ω2 (violet line). b (second picture)
shows the l1-norm produces a "staircase effect" on the reconstruction, but c (third picture) shows using
a p−norm with p close to 2 leads to oscillations.
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Conclusion

I The lp-norm (1 < p < 2) is able to better reconstruct
"almost" sparcity
→ can be useful for
I ocean ice models (e.g. derivative of the ice concentration in

the marginal ice zone)
I atmospheric models (e.g. cloud coverage)

I How to tune the parameter λ in (1) ? We used the Morozov
discrepancy principle for the experiments (see Annex 2), but it
requires the solving of several optimization problems. That
may be impracticable in actual data assimilation problem.

I What algorithm is the most suited to minimize the objective
function ?
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