

Etablishing the first continuous Holocene tephrostratigraphy on Kerguelen Archipelago subantarctic Indian Oean

VSTITUT

Southern Indian Ocean: a gap in the knowledge of past global climate variability

Paleo-zonal circulation reconstructions

Modified after Shulmeister et al., 2004

Reconstructing the Westerlies at Kerguelen should bridge this gap

Kerguelen: (almost) nothing in the middle of (really) nowhere...

Local tephrostratigraphy: a potential tool for synchronizing paleclimate records

Kerguelen: an active volcanic area throughout the Holocene

Obvious evidences of past major volcanic eruptions in the field

No published Holocene eruption dates

Volcanic deposit inventory by Bertrand Moine, peat coring by Nathalie van der Putten (cf. van der Putten et al., QSR, 2015)

Kerguelen: a not-that-small world Logistics is a nightmare

Where to find the good archives?

2014 coring PALAS survey

Lake Armor

Already known, "hard" shelter, 70 km from volcanic area Lake Armor: location, bathymetry, seismic transect and coring site selection

SE

input record

Seismic from Heirmann et al., Ant. Sci., 2012 Arnaud et al., 2020, https://eartharxiv.org/5jnu6

Lake Armor: coring operations

Lake Armor: Lithological description, K/Ca profiles, age models

Site 1 sediment : organic matter + interbedded volcanic material

Site 2 : several reworked deposits

K/Ca = recent volcanic material vs. bedrock basalt

Consistent agemodels

Arnaud et al., 2020, https://eartharxiv.org/5jnu6

High resolution detection of volcanic material: K/Ca and Hg

K/Ca

recent volcanic material vs. bedrock basalt Depleted Hg = Dilution of atmospheric Hg input

Arnaud et al., 2020, https://eartharxiv.org/5jnu6

Geochemical characterisation of volcanic deposits

All deposits fall in the trachyte range, comparable to previously published Kerguelen acidic volcanic material

Each deposit has been characterised for further identification in other records

Arnaud et al., 2020, https://eartharxiv.org/5jnu6

Lake Armor-based Kerguelen tephrostratigraphy

Consistent sites 1 and 2 records

Documented thickness and grainsize of volcanic deposits

Arnaud et al., 2020, https://eartharxiv.org/5jnu6

Lake Armor-based Kerguelen tephrostratigraphy

Each deposit has been dated (with uncertainties) and characterised for further identification in other records

Tephra #		А	В	C''	C'	С	D	E	F	G	H'	н
Depth (cm)	Тор	85	178	249	263	268,5	328	348	420	472	510	524,5
	Bottom	90,5	179	249	263	270,5	328	349,5	433,5	481	513	633
Age (cal. BP)	min95%	870-1000 cal. BP	2803	4423	4675	4766	5875	6510	8610	10054	10497	10000-11450
	best		2950	4559	4805	4894	6003	6649	8705	10246	10737	10900-11490
	max95%		3045	4680	4913	4999	6087	6726	8796	10333	10995	cal. BP
Thickness (cm)		6	2	<0,1	<0,1	3	1	1,5	13,5	9	3	1m thick
Visual description		>1 mm pumices	ash layer	cryptotephra	cryptotephra	~1 mm pumices	< 1mm pumices	~1 mm pumices	>1 mm pumices	>1 mm pumices	>1 mm pumices	-> 3cm pumice
Number of microprobe data		3	0	0	4	8	7	0	7	8	7	S
SiO2	%	64,78			64,69	62,92	64,16		64,87	64,33	65,28	64,21
	+/- 1 sigma	0,47			0,65	1,10	0,55		1,01	1,21	0,87	0,79
TiO2	%	0,36			0,40	0,53	0,46		0,42	0,34	0,31	0,33
	+/- 1 sigma	0,04			0,06	0,09	0,02		0,07	0,03	0,07	0,03
Al2O3	%	15,58			15,68	16,50	16,53		15,84	15,76	14,82	15,75
	+/- 1 sigma	0,17			0,75	0,74	0,13		0,89	0,46	1,16	0,34
MgO	%	0,09			0,07	0,26	0,26		0,13	0,10	0,14	0,21
	+/- 1 sigma	0,02			0,09	0,09	0,04		0,07	0,04	0,10	0,02
FeO	%	5,04			4,61	4,94	4,38		4,79	4,45	4,79	4,52
	+/- 1 sigma	0,29			0,22	0,45	0,28		0,16	0,12	0,38	0,14
MnO	%	0,17			0,24	0,22	0,16		0,18	0,18	0,18	0,24
	+/- 1 sigma	0,08			0,13	0,08	0,09		0,12	0,10	0,06	0,06
CaO	%	0,88			0,84	1,18	1,07		0,99	0,88	0,75	0,88
	+/- 1 sigma	0,06			0,19	0,14	0,02		0,24	0,09	0,22	0,05
Na2O	%	6,85			6,80	6,24	6,19		6,45	6,51	6,52	6,24
	+/- 1 sigma	0,05			0,32	0,39	0,19		0,33	0,18	0,34	0,22
K2O	%	5,25			5,44	5,81	5,93		5,39	5,31	5,15	5,55
	+/- 1 sigma	0,13			0,36	0,38	0,12		0,33	0,18	0,48	0,04

Arnaud et al., 2020, https://eartharxiv.org/5jnu6

Perspectives: PALAS 2019 coring survey

Past behaviour of the southern Ocean's atmosphere

SOUTHSPHERE

Jostein Bakke / Dept of Earth science and Bjerknes Centre for Climate research / University of Bergen

6 cored lakes/ 14 coring sites 127m of cores / 110 rock samples *****

2 PhD projects started in 2020

-

Special Issue annoucement

"Lake Sediments: An Invaluable Archive of Earth Critical Zone Trajectories"

Dr. Fabien Arnaud Website Guest Editor CNRS ; laboratoire EDYTEM Interests: Paleoenvironmental reconstructions from lake archives: paleohydrology, climate, anthropogenic impact, metallic contamination.

Dr. Charline Giguet-Covex Guest Editor Université Savoie Mont-Blanc ; laboratoire EDYTEM Interests: Paleoenvironments, human-environment interactions, mountain agro-ecosystems, soil erosion, lake sediment DNA

Dr. Jean-Philippe Jenny Website Guest Editor INRAE ; laboratoire CARRTEL Interests: Paleolimnology, global changes, carbon cycle, eutrophication, anthropocen

The Earth Critical Zone (ECZ) is the thin layer providing all necessary functions to sustain life on Earth. Understanding the functioning, legacy and long-term trajectories of the ECZ is thus crucial to preserve a safe operating space on Earth. Critical zone processes and their driving mechanisms, including climate (temperature, precipitation) and human impacts (pollution, agriculture, erosion) operate on a variety of time and space scales, hence precluding their direct monitoring. Lakes are present all over the world and their sediments collect most of the solid and dissolved fluxes from their catchment. With this issue, we aim at enlightening how lake sediments are invaluable and sometimes, underrated, archives of ECZ. This will concern the identification and long-term reconstruction of forcing mechanisms (climate, geodynamics, human-induced pressures) as well as ECZ reactions, both through the biotic and the abiotic compartments.

Methodological reviews will be particularly welcome in order to provide a valuable amount of technical, methodological and conceptual milestones for future researchers. We are also seeking for papers displaying and/or discussing emergent techniques, from field operations up to the most sophisticated lab analyses. Finally, we are keen to display the advancement in lake sediment-related computing science, including data management, meta-analysis or numerical modelling.

https://www.mdpi.com/journal/quaternary/special_issues/lake_Sediments

