Towards soil micro-zymography: comparison of staining and impregnation strategies

RHIZOSPHERE SPATIOTEMPORAL ORGANISATION

SPP 2089

Negar Ghaderi a*, Andrey Guber ^ь, Hannes Schmidt ^с, Evgenia Blagodatskaya ^a

2

^a Soil Ecology Department, Helmholtz Center for Environmental Research – UFZ, Germany ^b Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI USA ^c Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria

Deutsche

Forschungsgemeinschaft

* negar.ghaderi-golezani@ufz.de

HELMHOLTZ

, vironmental Research

OBJECTIVES

Developing the micro-zymography approach to visualize enzymes activity at the microscopic level combining the microinjections of fluorogenic substrates with epifluorescence microscopy.

- Visualization of the distribution of enzyme activity at the surface of soil micro-aggregates.
- Comparing different fixation approaches.

METHODS

- Visualization of samples were performed under the fluorescence microscope by both normal and UV light.
- Soil aggregates were selected from maize rhizosphere as we expected higher microbial and enzymatic activity in the rhizosphere compared with bulk soil.
- ٠ Soil samples were mounted on the glass slide with different methods; soil suspension, 2% agarose gel, and silicon.
- Visualization of enzyme activities was carried out by 10 mM phosphatasesubstrate.

RESULTS

No.	Approach	Fluorescent	Bright field
1	Soil suspension mounted on the glass slide		
2	Soil particles fixed on glass slide with 2% agarose gel		
3	Soil particles fixed on glass slide with silicon	18 8 19 19 19 19	

CONCLUSIONS

- * The liquid environment of soil suspension makes the particles mobile
- * Agarose gel demonstrates high auto-fluorescence which interferes the signals of enzyme activity
- Silicon is hydrophobic so substrate should be added before fixation.
- * Comparing the pros and cons of each approach, silicon is introduced as the best fixative in normal microscopic methods.

LEIPZIG