Seismic scattering and absorption of oceanic litho-
spheric S waves in the Eastern North Atlantic

Katrin Hannemann 1, Tom Eulenfeld ?, Frank Kriiger 3, Torsten Dahm 3* (katrin.hannemann@ uni-leipzig.de)
1Institute of Geophysics and Geology, Leipzig University; ? Institute of Geosciences, Friedrich Schiller University Jena; 3Institute of Geoscienes, University of Potsdam; 4Section 2.1: Physics of Earthquakes and Volcanoes, GFZ Potsdam

Regional seismicity and Po/So waves Results
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