Precipitation and temperature projections for the Indus River basin of Pakistan during 21st century using statistical downscaling

Session CL4.17 (Mountain Climatology and Meteorology)

By Muhammad Saleem Pomee, Elke Hertig and Bashir Ahmad (Augsburg University, Germany)

EGU2020- Sharing Geosciences online 4th May 2020, Vienna-Austria

The Indus River Basin: A Complex Climate Hotspot

Can relatively-low altitude stations explain orographic climate structure within the UIB? What observations tell us?

IRB and Study area

University

Study stations

K-Means Precipitation Clustering using Correlation

WS-DJFM)

Universität

Augsburg University MS-JAS)

Predictand-Predictor Modeling and Performance

- Time-series of selected regionally representative stations serve as **Predictands**
- GLM with gamma and Tweedie distributions used for precipitation regression models within a robust cross- validation framework by minimizing (maximizing)errors (MSESS) in 1000 random iterations.
- *MLR for modeling Tmax and Tmin on seasonal scales.*

• PC scores derived from S-mode PCA on selected dynamic and thermodynamic predictors of a reanalysis serve as **Predictors**

Precipitation Modeling performance

<u>Season</u> Spatial Scale	No. of Regions	Avg. Val. MSESS (Range) in %)
MS (UIB)	5	32.73 (20.71 to 52.541)
MS (LI)	2	36.19 (32.06 to 40.32)
PMS (UIB)	4	43.90 (28.83 to 50.42)
PMS (LI)	2	38.88 (37.64 to 40.11)
<u>WS</u> (UIB)	3	34.69 (26.10 to 49.57)
WS (LI)	2	32.69 (28.75 to 36.63)

Anomalous MS Precipitation: Physical Mechanisms

Circulation-based Reference and Model Uncertainties and the GCM Selections

- We used precipitation governing circulations for computing reference uncertainty by comparing these with circulations of ERA5 and NCEP-NCAR-II.
- Loading patterns of circulations after performing S-Mode PCA are compared through Taylor diagrams for reference uncertainty.
- The reference uncertainty for MS ranges from 16 % to 28% and for the WS it was 16 to 26% for the UIB
- Similarly we compared circulations of CMIP5-GCMs to select models for simulations over the basin.
- CMCC-CMS perform best for MS and MPI-ESM-LR showed best correspondence during the WS.

Impact of Model Weights on Precipitation (MME) Signals

- We used weights of model to compute the MME signals.
- Better performing models (models with higher weights) further strengthen the change signals. MS changes were most prominent
- The most wet part of the basin in observations along foothills of the southern Himalayans will remain stable to positive in all the seasons.

Conclusions

- Relatively low-altitudes stations can explain orography within the UIB
- Atmospheric circulations can resolve observed (fine-scale) patterns, explain governing mechanisms and help to select GCMs
- Precipitation during the WS (MS) increases but decreases during the PMS (over northwestern regions) and better performing models intensify these signals
- Spatial patterns suggest more northward penetrations of westerlies and MS regimes under RCP8.5 particularly over the central Karakoram
- Basin will warm, but increase in Tmin is more profound- a decrease in DTR. The WS (PMS) will warm significantly and follow EDW in UIB.
- *A large portion of UIB will show MS cooling* with less warming over the HA of the UIB.
- LI will exhibit more demand (rise in temp) in future for all seasons.
- A new dimension for future regional research

Further details in Pomee MS, Ashfaq M, Ahmad B and Hertig E (2020). Modeling Regional Precipitation over the Indus River Basin of Pakistan using Statistical Downscaling. TAAC accepted article DOI: 10.1007/s00704-020-03246-9