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Introduction (©HOM

* Models of fluvial erosion make predictions of sediment flux, e.g., the
well known Stream Power Law

* They can also be adapted to predict properties of sediment which
reflect provenance?

» Testing these predictions requires continuous maps of source
region properties or geochemistry

* High-resolution geochemical surveys are a solution to this

* In this study we use the G-BASE geochemical survey of the UK to
make predictions of higher order fluvial sediment geochemistry

* The success of these predictions Is evaluated by analysing
sediments sampled downstream
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* 5 Rivers draining Cairngorms, UK chosen for study
* Region has diverse geology and high relief
 This results in high signal to noise ratio
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First order stream geochemistry is densely sampled by G-BASE survey?
« Our study samples 67 sites on higher order streams with 4 duplicated sites
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Intrasample Split sample
(a) Sampling kit; (b) Site 29 on Dee, arrow indicates flow direction; (c) Site 48 in Tay

Catchment; (d) Site 55 on Tay; (e) Schematic of nested duplicate sample design for
investigating sources of variance

« <150 um fraction of bedload sampled by in situ wet sieving
« Duplicates taken at distances separated by ~100 m to investigate local heterogeneity
» Duplicates split in laboratory to create ‘replicates’ to investigate intrasample heterogeneity



Duplicates show large regional signals
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« Results of a nested analysis of variance on duplicates and replicates show that most
variance lies between sites for all elements

» Regional geochemical variability in river sediments dominates over local heterogeneity

Proportion of variance



Landscape modelling - Inputs (CMOM

57.5

3.5

Stream sediment Mg conc. / logo(mg kg™)

56.75°

* Interpolated G-BASE first order stream sediment geochemistry is used as a continuous
map of source region geochemistry for making predictions in higher order streams.



Landscape modelling - Inputs (CMOM
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(a) Predicted incision assuming stream power law with k=3.37; n=1; m=0.35; (b) Close up of upper reaches of Dee catchment
for greater detall

« SHTM1TS topographic data is used to predict incision using stream power law
implemented using LandLab?

1 Hobley et al. (2017), doi.org/10.5194/esurf-5-21-2017



Landscape modelling - Inputs (CMOM
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* Integrating predicted incision along flowpaths predicts total sediment flux
* This is used to predict composition of fluvial sediment at any point in the region



* Predicted sediment
geochemistry compared to
observed geochemistry at
sample sites

 Predictions successfully
capture observed regional
variability
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Predicted sediment Mg concentration (continuous lines) overlain with observed values (filled circles)
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(a) Misfit between predicted and observed Mg concentration. Inset histogram has binwidth = RMS misfit. (b) Cross-plot of predicted and observed
Mg concentration colourised by misfit. Horizontal lines indicate range of predictions created by varying n in stream power law from 0.05 to 1.95

» Misfits show no geographic distribution nor significant bias for Magnesium



Predicting geochemistry - Results
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(a) Comparison of predictions and observations for Rubidium concentrations. Inset histogram binwidth = RMS misfit, (b) Results for Uranium
(c) Zirconium (d) Potassium (e) Calcium (f) Lead

« Most elements are well fitted by model although some (e.g., Zr, Pb) are not

(8)
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Changing erosion parameters
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B Stream Power

B Homogeneous incision
M Stream Power (n=2)
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Model R? values for each element when different model parameters are changed, indicated by different colours. ‘Welsh G-BASE input’ refers to using
a different quadrant of G-BASE geochemistry taken (arbitrarily) from Wales, UK; ‘Rand. G-BASE’ input refers to spatially randomising the original
input G-BASE geochemistry. Only changing the geochemical input significantly affects model results.

« Different erosion parameters have a limited effect on model fit, including assuming
homogenous incision

« Using different geochemical inputs has a strong negative effect on model fit



Geology sets fluvial composition
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* Principal Component Analysis indicates geology is the primary control on higher order

sediment geochemistry

« Observations could therefore be inverted using stream power law to derive source

region geology



Conclusions

« Stream sediment geochemical surveys can be combined with landscape evolution
models to prediction fluvial sediment geochemistry.

» Testing model predictions in a case study in NE Scotland indicates a good fit
between predictions and observations.

» Geology is major control on sediment geochemistry indicating sediments could be
iInverted for source region geology.

Abstract - doi.org/10.5194/eqgusphere-equ2020-5839 Email - a.lippl8@imperial.ac.uk
Video Presentation - vimeo.com/413161090 Twitter - @AlexGLipp



mailto:a.lipp18@imperial.ac.uk
https://twitter.com/alexglipp
https://doi.org/10.5194/egusphere-egu2020-5839
https://vimeo.com/413161090

