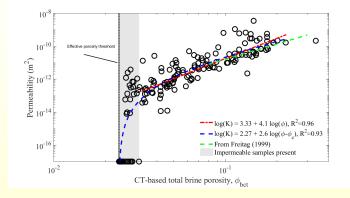
Permeability of growing sea ice: Observations, modelling and some implications for thinning Arctic sea ice

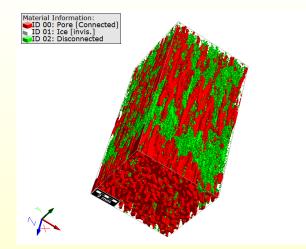
Sönke Maus

Norwegian University of Science and Technology (NTNU) Department of Civil and Environmental Engineering Trondheim, Norway

EGU - Sharing Geoscience Online 2020 CR6.2 Rapid changes in sea ice: processes and implications

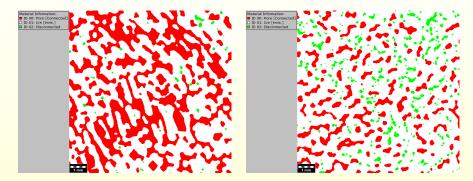

- Motivation
 - Sparse observational basis of sea ice permeability
 - Understand/ model the dependence of permeability on porosity
- Methods
 - Centrifuge study of sea ice
 - X-ray micro-tomography (μ CT): 3-d sea ice microstructure
 - CFD simulations to obtain permeability from μ CT images
- Key results
 - Relationship between effective and total poposity
 - Revised permeability threshold (2-3% vs widely assumed 5%)
 - Relationship between permeability and porosity

Key Result 1: Effective versus total brine porosity


Centrifuging sea ice core segments yields a relationship between effective and total porosity of the form $\phi_{eff} = const.(\phi - \phi_c)^{\beta}$. $\phi_c = 2.4 \pm 0.3\%$ is smaller than the widely assumed 5%. $\beta = 0.83 \pm 0.03$ is consistent with the critical exponent epected for 3-D directed percolation (0.81).

Key Result 2: Permeability versus brine porosity

In a log-log robust fit we exclude the shaded transition regime, where both permeable and impermeable samples are present. We obtain a relationship $K \sim \phi^{4.1}$, with larger exponent than 3.1 reported by Freitag (1999). The best percolation fit gives $K \sim (\phi - \phi_c)^{2.6}$ with $\phi_c = 2.4\%$.


Connected versus disconnected porosity: 3-D XRT image

XRT image 2 cm from the ice-ocean inteface, highlighting connected brine versus disconnected brine (ice invisible)

Connected versus disconnected porosity: 2-D XRT slices

Most connected brine

More disconnected brine

(日)

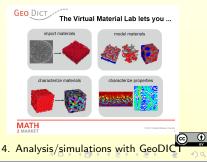
XRT imagery based on centrifuged samples reveals disconnected and connected pores and their transition.

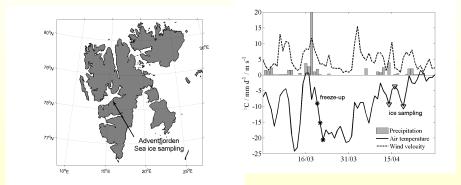
Present work flow:

- 1. Rapid sectioning of sea ice cores
- 2. Transport samples at in situ temperatures
- 3. Centrifugation of brine at in situ temperatures
- 4. (Cooling sequence: centrifugation at lowered temperatures)
- 5. Storage below eutectic temperature (-80 $^{\circ}$ C) stable samples
- Absorption tomography: distinguishes air, ice and solid salts Air: connected network ↔ salt: disconnected inclusions
- 7. 3-d image postprocessing (filtering, segmentation)
- 8. Pore space ananlysis and permeability simulation

・ロト ・ 同ト ・ ヨト ・ ヨト

Work Flow from Field to CT Image Analysis

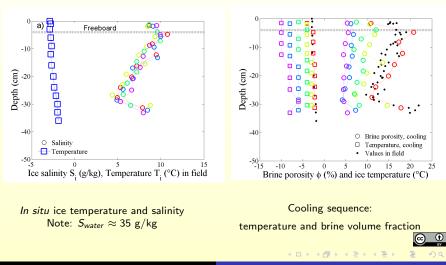

1. Field Sampling


2. Computed Tomography

3. Refrigerated Centrifuge

Field Conditions, April 2011, Longyearbyen

Location in Adventbay, Svalbard


Meteorological conditions at Longyearbyen

airport

イロト イヨト イヨト イヨト

Temperature, Salinity, Brine Volume Fraction

Computed Tomography and Permeability Simulations

Computed Tomography

- MicroCT 40 and MicroCT 80, Scanco Medical AG
- ▶ 37 mm FOV (horizontal image width), 18 μ m resolution
- ullet pprox 1 hour scanning time per centimeter sample height
- ho pprox 5 Gigabyte raw data per centimeter
- imaging at -20 °C

Simulations with GeoDICT

- X x Y x Z \approx 1200 x 1200 x 1500 voxels
- 18 μ m voxel size \Rightarrow 2 x 2 x 2.5 cm
- ► Flow simulation in stacks (≈ 1200 × 1200 × **300** voxels)
- Hardware: 32 GB RAM, 1cm pprox 4 days on 3 Ghz Quadcore PC
- Stokes-Solver, Darcy flow (low Re): $V = \frac{K}{\mu} \frac{dP}{dz}$
- Vertical permeability K

I like to thank

- Margret Matzl, Martin Schneebeli (WSL-SLF Davos) for XRT imaging support
- Andreas Wiegmann, Jürgen Becker (Math2market): For support with CFD simulations using GeoDict
- The Research Council of Norway (NFR) for funding through grants 218407 (MIPHASICE) and 243812 (MOSIDEO)

・ロト ・ 同ト ・ ヨト ・ ヨト