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Ice Particle Size

Directly linked to radiation budget;
Affects climate sensitivity;

Critical for determining ice particle fall velocity, which is
directly linked to precipitation rate;

Alter alters the efficiency of mixed-phase and ice microphysics;
Plays a pivotal role in aerosol-cloud interactions;

Critical for reducing IWC and precipitation rate retrieval
uncertainty;

Sensitive to environmental conditions.



Rei lllustrates Different Microphysical Pathways of Ice Formation
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ENTICE

ENTICE is a proposed Earth Venture Mission that will provide the first-ever global
measurements of ice cloud particle size and density profiles, together with atmospheric
temperature and humidity, which will enable accurate quantification of ice cloud

radiative effects and advance our understanding of ice cloud microphysical processes.
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Receiver (V-pol)

_ e BASIC MEASUREMENTS

* Vertical profiles:
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mirror

(H-pol)
(replaced with 850 * Ice Particle Equivalent Sphere Effective Diameter -

_ rotated 90° for V- De ([lm)

N s ¢ pol) .
'/ - (18183 GHa * Atmospheric Temperature - T (K)
4?“ Sounder « Water Vapor Mixing Ratio - H,O (kg/kg)
- 3
Secondary _—— Z * Relative Humidity - RH (%)

* Precision:

* De: 25%; IWC: 25%; IWP: 20%; H,0: 20%; RH: 20%; T:
< 1.5K



Fidelity of Ice Clouds in CESM1

Ice Cloud Optical Thickness
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Fidelity of Ice Clouds in CESM1
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NCAR CESM1
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Observing System Simulation Experiment (OSSE) Type Design
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Cloud Vertical Profile Changes by Ice Fall Speed
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Larger ice particles settle faster, reducing ice above 350 hPa but enhancing below.
* Areduction in low cloud with larger Rei, due to strong water vapor reduction in PBL.
* General monotonicity holds for cloud responses.
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Observational Constraints on Climate Mean States via R

Ice fall speed R.; in Radiation
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* The improvement rate (1-rangegyice/rangecesy) is about 65%, .
* Muted temperature but significant precip. responses to R, in radiation.
* General monotonicity generally holds for climate responses.



Observational Constraints on Climate Mean States via R

Snow on fall speed R, in Radiation
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* Much less sensitivity to snow particle size.
* R, effect in radiation is more important than that in microphysics.



Equilibrium Climate Sensitivity

ATs (G=8.10, T=5.93 K) 4><CO2 - Pl APrecip. (G=0.46, T=0.35 mm/day)

e

8.0
6.0
4.0
2.0
0.4
0.4
-2.0
4.0
-6.0
-B.0

4.0
3.0
2.0
1.0
0.2
0.2
-1.0
-2.0
-3.0
-4.0

9.0 B 0.55

o Larger R,;/R,, ol

fﬁ .I.L Smaller R,;/R,, ;_ﬁ_ -L'L

8.0 0.45 |

75 B 0.40 ‘

ai RRei as RRes I ai RRei as RRes

* |ce/snow related parameters can cause a relative change of climate sensitivity from +12.3% to -6.2%..
* ENTICE is expected to reduce the R, related climate sensitivity uncertainty by 60%.



Summary

* Climate mean states are sensitive to ice particle size.

A future satellite mission concept ENTICE (radiometer + radar) shows
great potential in constraining R,; within 25% uncertain range.

* Our OSSE-type study shows ENTICE can reduce R, related climate
uncertainty by 60%.

* Changes in ice particle size in radiation are important in ECS, with
smaller ice particle size, larger climate sensitivity.

* Snow particle size is less important than R, in determining climate
state/sensitivity.

o Wang, Y., H. Su, J. H. Jiang, F. Xu, Y. Yung “Impact of Cloud Ice Particle Size Uncertainty in A
Climate Model and Implications for Future Satellite Missions”, J. Geophys. Res. 125, 6,
https://doi.org/10.1029/2019JD032119, (2020).



https://doi.org/10.1029/2019JD032119

