

 Wang, Y., H. Su, J. H. Jiang, F. Xu, Y. Yung Impact of Cloud Ice Particle Size Uncertainty in A Climate Model and Implications for Future Satellite Missions, J. Geophys. Res. 125, 6, doi.org/10.1029/2019JD032119, (2020). Impact of Cloud Ice Particle Size Uncertainty in GCM and Implications for Future Satellite Missions

Hui Su¹, Yuan Wang², Jonathan H. Jiang¹, Feng Xu³, Yuk L. Yung²

¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA

³University of Oklahoma, Norman, OK

CERES Cloud Radiative Forcing [Hartmann and Berry, 2017]

Ice Particle Size

- Directly linked to radiation budget;
- Affects climate sensitivity;
- Critical for determining ice particle fall velocity, which is directly linked to precipitation rate;
- Alter alters the efficiency of mixed-phase and ice microphysics;
- Plays a pivotal role in aerosol-cloud interactions;
- Critical for reducing IWC and precipitation rate retrieval uncertainty;
- Sensitive to environmental conditions.

Rei Illustrates Different Microphysical Pathways of Ice Formation

Zhao, Wang et al., Nature Geoscience, 2019

ENTICE

ENTICE is a proposed Earth Venture Mission that will provide the first-ever global measurements of ice cloud particle size and density profiles, together with atmospheric temperature and humidity, which will enable accurate quantification of ice cloud radiative effects and advance our understanding of ice cloud microphysical processes.

BASIC MEASUREMENTS

• Vertical profiles:

- Ice Water Content IWC (mg/m³)
- Ice Particle Equivalent Sphere Effective Diameter $\,$ $\,$ D_{e}\,(\mu m)
- Atmospheric Temperature T (K)
- Water Vapor Mixing Ratio H₂O (kg/kg)
- Relative Humidity RH (%)
- Precision:
 - De: 25%; IWC: 25%; IWP: 20%; H₂O: 20%; RH: 20%; T: < 1.5K

Fidelity of Ice Clouds in CESM1

Ice Cloud Optical Thickness

Global: 13.0 Tropical: 12.8

Global: 16.2

Tropical: 13.2

18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0

Fidelity of Ice Clouds in CESM1

Ice Cloud Optical Thickness

Ice Cloud Effective Radius (cloud top)

18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0

28.0 26.0 24.0 22.0 20.0 18.0 16.0 14.0 12.0

Global: 13.0 Tropical: 12.8

Global: 16.2

Tropical: 13.2

Observing System Simulation Experiment (OSSE) Type Design

Experiment Purpose	Parameter Perturbed	Fractional Changes	Uncertainty Range	Integration Time	
R _{ei} influence on cloud distribution and lifetime	ai in R _{ei} fall speed calc	-50% / +100%	CESM	30 years	
		-25% / +25%	ENTICE	30 years	Atmosphere Mode coupled with a slab ocean
R _{ei} influence on radiation	RR _{ei} in radiation transfer	-50% / +100%	CESM	30 years	
		-25% / +25%	ENTICE	30 years	
Snow particle size (R _{es}) influence	as and RRes	All above	All above	30 years	
To quantify climate sensitivity	All above with 4×CO ₂	All above	All above	30 years	
rrent Rei Range in CESM: +100%/-	- 50% 296 295 <u>∽</u> 294				

ENTICE Constrained Rei Range: +/- 25%

Cloud Vertical Profile Changes by Ice Fall Speed

- Larger ice particles settle faster, reducing ice above 350 hPa but enhancing below.
- A reduction in low cloud with larger Rei, due to strong water vapor reduction in PBL.
- General monotonicity holds for cloud responses.

Atmospheric Changes by Increasing R_{ei}

Observational Constraints on Climate Mean States via Rei

- The improvement rate (1-range_{ENTICE}/range_{CESM}) is about 65%, .
- Muted temperature but significant precip. responses to R_{ei} in radiation.
- General monotonicity generally holds for climate responses.

Observational Constraints on Climate Mean States via R_{es}

- Much less sensitivity to snow particle size.
- R_{es} effect in radiation is more important than that in microphysics.

Equilibrium Climate Sensitivity

- Ice/snow related parameters can cause a relative change of climate sensitivity from +12.3% to -6.2%..
- ENTICE is expected to reduce the R_{ei} related climate sensitivity uncertainty by 60%.

Summary

- Climate mean states are sensitive to ice particle size.
- A future satellite mission concept ENTICE (radiometer + radar) shows great potential in constraining R_{ei} within 25% uncertain range.
- Our OSSE-type study shows ENTICE can reduce R_{ei} related climate uncertainty by 60%.
- Changes in ice particle size in radiation are important in ECS, with smaller ice particle size, larger climate sensitivity.
- Snow particle size is less important than R_{ei} in determining climate state/sensitivity.

 Wang, Y., H. Su, J. H. Jiang, F. Xu, Y. Yung "Impact of Cloud Ice Particle Size Uncertainty in A Climate Model and Implications for Future Satellite Missions", *J. Geophys. Res.* 125, 6, <u>https://doi.org/10.1029/2019JD032119</u>, (2020).