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Space Geodesy
Space-Geodetic Techniques, Reference Frames and Earth Orientation Parameters

Fig. 2.1 from Klopotek (2020)

Space geodesy:
I facilitates our understanding of

Earth dynamics and is fundamental
for providing accurate and long-term
stable global reference frames
(celestial and terrestrial)

I relies (to a large extent) on
observations from multiple
techniques: VLBI, GNSS, SLR, LLR,
GNSS, and DORIS

Each space-geodetic technique:
I sensitive to different sets of

Earth-based parameters
I conducts observations with different

spatio-temporal resolution
I provides geodetic products with

different latency and quality
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Combination of Space-Geodetic Techniques
Local Ties, Space Ties and Global Geodetic Parameters

Fig. 2.3 from Klopotek (2020)

Combination of Space-Geodetic
Techniques:

I Overcome technique-specific
weaknesses and identify biases

I Improved terrestrial reference frame
I Highest possible quality and

homogeneity of station-based and
global geodetic parameters:

I Earth Orientation Parameters
I Geocenter Motion
I · · ·
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Geodetic and Astrometric VLBI
Legacy VLBI System vs VLBI Global Observing System (VGOS)

Legacy (S/X) VLBI System:

The current network of telescopes
employed for routine observations

I Different telescope types
(telescope size, mounting type, slew
speed, obs. sensitivity)

I Dual-band system:
S-band (2.2–2.4 GHz) and
X-band (8.1–8.9 GHz)

I Long-observation scans

I Delay Uncertainty: 9.3 mm (31 ps)
(on a weak radio source,
Niell et al. (2018))

I Operationally stable with global
coverage

VLBI Global Observing System
(VGOS):
The next-generation (broadband) VLBI

System and a milestone step

towards GGOS
I Unified telescope structure

(compact design, 13-m telescope
reflectors, fast-slewing,
obs. sensitivity)

I Broadband characteristics:
2–14 GHz

I An improved observation density
and short-observation scans

I Delay Uncertainty: 2.4 mm (8 ps)
(on a weak radio source,
Niell et al. (2018))

I Reaching an operationally stable
global network
of telescopes
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Satellite Geodesy with VGOS in the GGOS era
Geodetic VLBI and Earth Satellites

VLBI Station

Satellites

Quasars

VLBI Station

VLBI Station

Combination of quasar and VLBI-based
satellite observations:

I Extend the field of VLBI research with
new applications

I Potential contribution of VLBI in
co-location in space (space ties)

I With the ultimate goal of routine quasar
+ satellite observations (if beneficial)
without degradation of standard
VLBI-derived geodetic products

I Several questions related to satellite
observations with (geodetic) VLBI:
I theoretical aspects (sensitivity to

conventional/new parameters,
delay uncertainty, quality of
solve-for parameters)

I technical feasibility (frequency
setup, signal characteristics)
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Geodetic VLBI Simulations
Simulated VLBI Observables (group delays)

c5++ (Hobiger et al. 2010, Hobiger & Otsubo 2014) and its simulation module
(Klopotek et al. 2018) for geodetic VLBI:

τsim = τg +(ZWD2 ·MFw(ε2)+ clk2) −(ZWD1 ·MFw(ε1)+ clk1)+ τrnd

I Geometric delay τg for quasars or
artificial radio sources at a finite distance (Duev et al. 2012)

I Zenith wet delay ZWDi

I Wet mapping function MFw(εi)

I Station clock variation clki
I Observation noise τrnd (white noise)
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Geodetic VLBI Simulations
Simulated VLBI Observables (group delays)

c5++ (Hobiger et al. 2010, Hobiger & Otsubo 2014) and its simulation module
(Klopotek et al. 2018) for geodetic VLBI:

τsim = τg +(ZWD2 ·MFw(ε2)+ clk2) −(ZWD1 ·MFw(ε1)+ clk1)+ τrnd

I Geometric delay τg for quasars or
artificial radio sources at a finite distance (Duev et al. 2012)

I Zenith wet delay ZWDi <- simulate this
I Wet mapping function MFw(εi)

I Station clock variation clki <- simulate this
I Observation noise τrnd (white noise) <- simulate this
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Monte-Carlo Simulations

I A mathematical model + stochastic
behaviour of the input parameters

I Target parameter quality derived

empirically through repeated statistical

sampling
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Monte-Carlo Simulations

I A mathematical model + stochastic
behaviour of the input parameters

I Target parameter quality derived
empirically through repeated statistical
sampling

I Monte-Carlo (MC) simulations are good
tools to validate the performance of
new concepts

I MC simulations are only as realistic as
the stochastic (and mathematical)
models utilized to produce the
simulated input data
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Combination of quasar and satellite observations
VGOS network
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The basis of this study forms a VGOS-type schedule (with

16 stations), which was used during the conceptual stage of VGOS

Combination of satellite and quasar
observations on the observation level
based on 3-day VGOS-type schedules to
determine:

I Earth Rotation Parameters (ERP):
polar motion (xp, yp), Earth
Rotation (UT1-UTC)

I Positions of VLBI antennas

Thanks to satellite observations one can
derive additionally:

I Satellite Orbits
I Geocenter (Offsets)
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Combination of quasar and satellite observations
Incorporation of satellite observations into VGOS schedules

A simple ’scheduling’ approach:

Replacing every 8th quasar scan* with a satellite scan, in which one of the Galileo
(GAL) satellites is observed (in total 6 GAL satellites in the schedule)

Schedule
name

Satellites
used

Number of observations
(3-day solution)

Quasars Satellites

Total Per Satellite

GAL-S6-R8-VGOS
E01, E02,
E04, E07,
E12, E26

213 951 9 902
1 342/2 237/
1 210/1 949/
2 134/1 030

Reference Schedule - 213 951 - -

* (A single scan should be understood as a (natural/artificial) radio source that is observed

simultaneously by several VLBI telescopes)
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Combination of quasar and satellite observations
Simulation Environment

Simulation Environment:
I Simulate Zenith Wet Delays

(ZWDs), station clocks, and
baseline-based observation
noise σrnd-qsr = 0.14 cm
(for quasars) and σrnd-sat
(for satellite observations)

I Three different noise levels
for satellite observations
(in cm):
σrnd-sat =
[0.14, 1.41, 13.86]

I No acceleration noise is
present

I For each simulation run, an
input (a priori) satellite
position vector perturbed
randomly with σ = 30 m
before being used in the
estimation process

Based on the MC runs, one can access precision
and accuracy metrics*:

Fig. 2 from Klopotek et al. (2020)

*(In this study, ti+1-ti= 5 min)
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Combination of quasar and satellite observations
Parameterization of the estimated parameters

Common parameters (ZWDs, troposphere gradients, station positions, Earth Rotation
Parameters (ERP), station clocks):

I Derived using both observation types, proportionally to the applied weighting
(based on σrnd and elevation dependent)

Satellite observations:
I Station-specific clock biases (w.r.t. the reference station in the network)

estimated once per 3-day arcs as constant parameters

Orbit Determination:
I Conventional dynamic POD approach (numerous satellite force models, a

numerical integrator) in an iterative least-squares approach
I Hybrid model: box-wing model and the five-parameter Empirical CODE Orbit

Model (ECOM-1, Beutler et al. 1994):
estimating D0, Y0, B0, BS , BC (one set per 3-day solution)

I No pseudo-stochastic pulses are estimated

Geocenter (offsets):
I One set per 3-day solution
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Geo VLBI for POD of GAL satellites: A simulation study
VGOS: Satellite Orbits - Performance I

Sat.
Satellite

observation
precision [cm]
(σrnd-sat)

3-D Orbit Quality (WRMSO3D) [cm]

QS-OS QS-OSG QS-OSE QS-OSEG

E01;E02;
E04;E07;
E12;E26

0.14 1.0(1.0) 1.0(1.0) 1.0(1.0) 1.0(1.0)

1.41 1.6(1.6) 1.7(1.7) 1.6(1.6) 1.7(1.7)

13.86 12.4(12.5) 13.3(13.3) 12.4(12.5) 13.3(13.4)

- The values in bold represent the mean WRMSO3D calculated based upon the corresponding measures evaluated for
each satellite

- The values in parentheses refer to the parameter accuracy

- For all analysis options and the considered satellite measurement noise levels, the quasar observation precision was set
to 0.14 cm

* (QS-OSEG - read as: using quasar (Q) and satellite (S) observations,(-) estimate satellite orbits (O), station
positions (S), ERP (E) and geocenter offsets (G); similar applies to other analysis options; complementary to four
analysis options: reference solutions (either Q-S or Q-SE), i.e., the same geometry, but without satellite observations)
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Geo VLBI for POD of GAL satellites: A simulation study
VGOS: Satellite Orbits - Performance II

Shown for 3 Galileo Satellites (from GAL-S6-R8-VGOS and QS-OS)

Orbit scatter (WRMSO3D, precision) for σrnd-sat = 1.41 cm:
(yellow dots - VGOS stations, small dots - pos. of satellites at observation epochs)

Galileo - E02 & E04 & E12

WRMSO3D [mm]
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Fig. 9 from Klopotek et al. (2020)

- Average WRMSO3D for E02, E04 and E12: 1.5 cm
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Geo VLBI for POD of GAL satellites: A simulation study
VGOS - Geocenter

- Geocenter Offsets:
WRMS (X/Y/Z) [cm]

(accuracy, σrnd-sat= 0.14 cm):
QS-OSG 0.36/0.45/0.68
QS-OSEG 0.36/0.46/0.68

(accuracy, σrnd-sat= 1.41 cm):
QS-OSG 0.56/0.60/1.01
QS-OSEG 0.56/0.61/1.01

(accuracy, σrnd-sat= 13.86 cm):
QS-OSG 4.38/4.87/8.19
QS-OSEG 4.38/4.87/8.19

- Close to the detection level of geocenter
motion for σrnd-sat= 0.14 cm

In reality*:

- Z geocenter component highly
correlated with ECOM-1’s D0 (empirical)
parameter :=(

- One might need to consider 1-day arcs in
order to diminish prospective orbit
modeling errors or spurious signals

- Improve orbit modelling to account for
non-gravitational unmodelled perturbing
forces
- Investigate sensitivity aspects more
thoroughly

*(Also in connection to orbits)
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Geo VLBI for POD of GAL satellites: A simulation study
VGOS - Station Positions and ERP
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Fig. 10 from Klopotek et al. (2020)

Compared to the quasar-only
reference solutions
(either QS-S or QS-SE):

- Derived station positions are not
affected negatively by satellite
observations

- Additional satellite observations
do not degrade the estimated
Earth rotation parameters
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Additional Simulations
VGOS - Extension to EOP (ERP + Celestial Pole Offsets)

The same schedule (GAL-S6-R8-VGOS):

- Average WRMSO3D [cm] (accuracy, σrnd-sat= 1.41 cm):
QS-OSE 1.6 cm / QS-OSEG 1.8 cm
- Geocenter Offsets WRMS (X/Y/Z) [cm] (accuracy, σrnd-sat= 1.41 cm):
QS-OSEG 0.59/0.61/1.01 cm
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Similar results when estimating EOP, i.e.,
ERP + Celestial Pole Offsets (NUTX, NUTY) :-)
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Prospective VLBI transmitter
Signal Characteristics and Frequency Setup - VGOS-type observations
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B
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Band-C group delayBand-A group delay
(Ionosphere calibration) (Main observable)

(A single broadband delay)

(Quasar-like signal spectrum)

Delay Uncertainty (group delays) proportional to the spanned bandwidth (B) in Hz:

στ ∼ 1

2π SNRbaseline(0.4 ·B)
[s] (1)

Specific frequency bands and signal strength for prospective VLBI

transmitter(s) in accordance with ITU-R Recommendations
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Prospective VLBI transmitter
Signal Strength

Assuming clear-sky conditions*:

Pr[dBW ] = Pt +Gt − LFS − Latm − Lother − Lpol +Gr

Pt •Gt 

Atmosphere

Distance (d)

G
Lpol

X-band observations (at 10◦ elevation) and a
VLBI transmitter with (for instance) 0.5 W per
band to minimize thrust effects (Steigenberger
et al. 2018) and Gt= 3 dBi for a satellite
@ 20 000 km:

I LFS =
(

4·π·d
λ

)2
≈ 197 dB @ 8.5 GHz

I Lpol assumed 3 dB
I Lother (out-of-main-beam obs., other)

assumed 5 dB
I Latm up to 0.24 dB @ 8.5 GHz

* (Although possible, link during rain conditions is more comprehensive and sensitive
to the chosen location, frequency band or assumed time availability of the signal)
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Prospective VLBI transmitter
Signal Strength

Assuming clear-sky conditions*:

Pr[dBW ] = Pt +Gt − LFS − Latm − Lother − Lpol +Gr

Pt •Gt 

Atmosphere

Distance (d)

G
Lpol

X-band observations (at 10◦ elevation) and a
VLBI transmitter with (for instance) 0.5 W per
band to minimize thrust effects (Steigenberger
et al. 2018) and Gt= 3 dBi for a satellite
@ 20 000 km:

Assuming VGOS-type (13-m) antennas and
recording with 8 channels 4 MHz wide:

Pr = 2.4×10−15W→ 9.3×10−25Wm−2Hz−1

≈ 93 Jansky (Jy)

Natural radio sources (quasars) for geodetic
purposes ≈ 1 Jy

* (Although possible, link during rain conditions is more comprehensive and sensitive
to the chosen location, frequency band or assumed time availability of the signal)
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Prospective VLBI transmitter
Past, present and future satellite missions

Potential to include dedicated VLBI transmitters on board of:

I The subsequent generation of Galileo satellites

I Future co-location satellites at various altitudes

I CubeSats, see, e.g., VLBI observations of the APOD-A nano
satellite (Hellerschmied et al. 2018, Hellerschmied 2018)
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Summary
VGOS-type satellite observations in the GGOS era:

I Consistent determination of CRF, TRF, EOP, geocenter (to a
certain extent) and satellite-based parameters

I Participation of VLBI in co-location in space

I Technical aspects (signal structure, signal strength, frequency
bands and frequency setup) of major importance

I Automated and optimised scheduling of quasar and satellite obs.
in order to not degrade the standard parameters that are
routinely provided by conventional geodetic VLBI

I Satellite observations could be incorporated into regular geodetic
sessions with no major effort and without additional or dedicated
Earth-based equipment

I A multi-disciplinary topic that should involve various parties in order
to fully benefit from the presented concept or similar ideas
considered in the future...
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Stay Safe!
grzegorz.klopotek@chalmers.se
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