
Developing a multi-methods dating framework for Eastern Mediterranean region over the Late Quaternary s. zhang^{1*}, c. Manning¹, c. Satow², S.J. Armitage^{1,3}, S. Blockley¹ * Shuang.Zhang.2017@live.rhul.ac.uk

¹ Royal Holloway, University of London, Egham, UK, ² Department of Social Sciences, Oxford Brookes University, Oxford, UK, ³ SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Post Box 7805, 5020, Bergen, Norway.

• OSL samples Figure 1. Age models for core LC31, depending on dating assumptions. Black text denotes assumptions, red text denotes inferred ages.

Preliminary dating work has been done. Sapropel chronology

- organic-rich dark-coloured sediments mainly formed in anoxic bottom waters.
- used as event horizons chronology.

Radiocarbon

- Abu-Zied et al. (2008) reported radiocarbon dates in the top two sections of core LC31.
- More radiocarbon dates will help to pin down paleomag excursion events, calibrate OSL dates and estimate ages of some tephra layers.

Paleomagnetism

- Inclination indicates paleomagnetic excursion signals
- Tuning Relative Paleointensity (RPI) to Global paleointensity records PISO 1500 (Channell *et al.*, 2009) and SINT 800 (Guyodo & Valet, 1999)

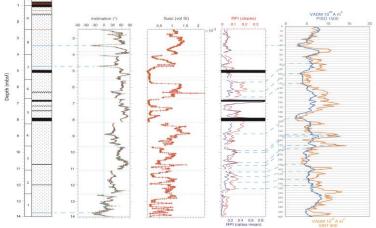


Figure 2. Magnetic profiles of core LC31 and comparison to global paleointensity records.

Background

The Eastern Mediterranean is an important region for understanding the late Quaternary, as there is evidence for a complex pattern of climatic and environmental change, influenced by orbital forcing and complex feedback mechanisms (Rohling *et al.*, 2013). It is also a key region for examining the dispersal of humans out of Africa.

Core MD81-LC31

• 14 m marine core

Figure 3. Map of Core LC31 location and volcanoes.

↑ E. Med is surrounded by many active volcanoes (Aegean, Anatolian and potential Italian) during Quaternary, previous studies have reported the existence of multiple tephra layers in the marine core (Keller *et al.*, 1978; Wulf *et al.*, 2018; RESET database).

Ongoing dating work...

Tephrochronology

E. Med is a place with huge potential to apply crypto-tephrochronology. Thus we aim to build a complete continuous tephrostratigraphy by using core LC31 to resolve:

- Relatively limited geochemical database from different volcanic centres for the region
- Lack of long cryptotephra stratigraphic records

OSL dating

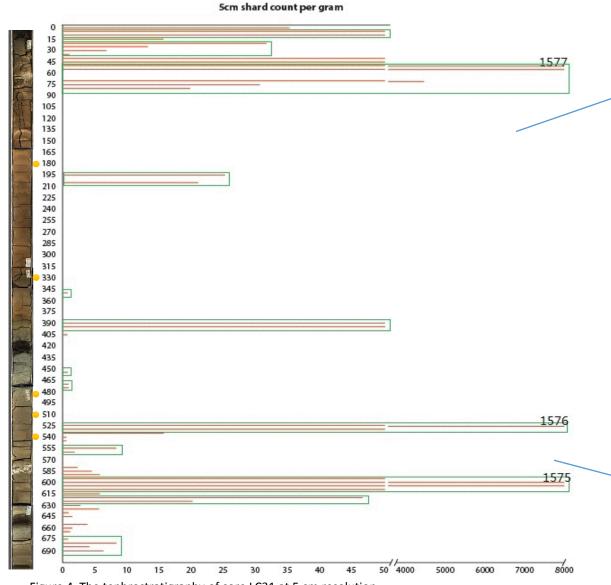
16 samples have been taken for OSL dating across all sections and some are above/below sapropels and visible tephras (see slide 1 log). The application of novel luminescence methods to deep-sea cores has the potential to allow direct dating of these sediments to >200 ka, considerably **beyond the range of radiocarbon dating**.

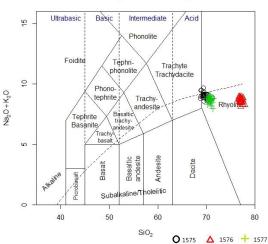
With the aid of tephra and OSL dates, we aim to deliver

- An integrated multi-methods chronology for the E. Med over the last ~200,000 years
- The first marine crypto-tephra record in Antalyan basin

Ongoing work

Depth (cm)




Figure 4. The tephrostratigraphy of core LC31 at 5 cm resolution.

References: 1 Blockley et al, *Leverhuhulme* RPG-2017-087; **2** Armitage et al., 2015. *Quat. Geo.*, *30*, pp.270-274; **3** Armitage, & Pinder, 2017. *Quat. Geo.*, *39*, pp.124-130; **4** Bourne, et al., 2010. *Quat. Sci. Rev.*, *29*, pp. 3079-3094; **5** Channell, J.E.T., et al., 2009. *EPSL* 283, pp.14-23; **6** Federman, & Carey, S.N., 1980. *Quat. Res*, *13*, pp.160-171; **7** Guyodo, & Valet, 1999. *Nature*, *399*, p.249; **8** Margari, et al., 2007. *JVGR*, *163*, pp.34-54. **9** Nowaczyk, et al., 2013. *EPSL*, *384*, pp.1-16; **10** Nowaczyk, et al., 1994. *Geo. J. Int.*, *117*, pp.453-471; **11** Rohling, et al. 2013. *Current Anth.*, *54*, S183-S201; **12** Satow, C., et al. 2015. *Quat. Sci. Rev.*, *117*, 96-112; **13** Satow, C., et al. 2020. *Quaternary.*, 3, pp.6; **14** Smith, et al., 1996. *Geo. Res. Let*, *23*, pp.3047-3050; **15** Wulf et al., 2018. *Quat Sci Rev*, *186*, pp.236-262; **16** Wulf, S., et al., 2020. *Earth Sci Rev*, pp.102964.

Three visible tephra layers geochemistry

Tephra	Potential correlation	Age	Provenance
1577	Cape Riva	22 ka	Santorini
1576	ML-6 tephra?	58 ± 5.69 ka?	Yali/Kos/Nisyr
	Kos Plateau Tuff?	161 ka?	os or Turkey
1575	Santorini Middle Pumice?	100 ka?	Santorini
	Santorini Lower Pumice?	185 ka?	

TAS (Le Bas et al. 1986)

Volcanic provenance

Some recent studies have reported detailed **Santorini** cryptotephrostratigraphy in marine records (Satow *et al.*, 2015) and geochemistry of proximal deposits (Wulf *et al.*, 2020). This work has huge potential to build up the tephrostratigraphy to understudied **Kos/Yali/Nisyros** and **Turkish** volcanoes.

BY

Figure 5. Major element on TAS classification diagram (Le Bas et al., 1986)

Multiple tephra peaks

It is not sure if all tephra peaks are primary fall or reworked visible tephra, higher resolution point samples and geochemical analysis are required.

Overall, tracking **cryptotephra** in marine sediments along with multiple dating techniques will provide a precise age and dating framework to synchronise for archaeological and palaeoenvironmental archives.