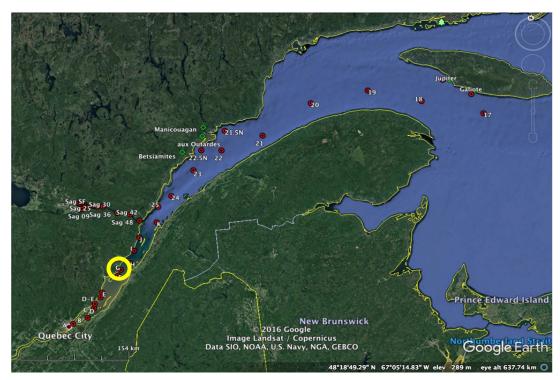
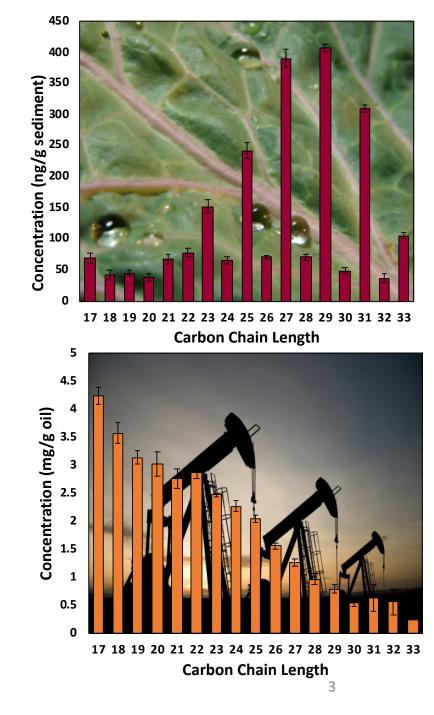


Detection of Crude Oil Contamination in St. Lawrence Estuary Sediments Using n-Alkanes and PAHs Diagnostic and Isotopic Ratios

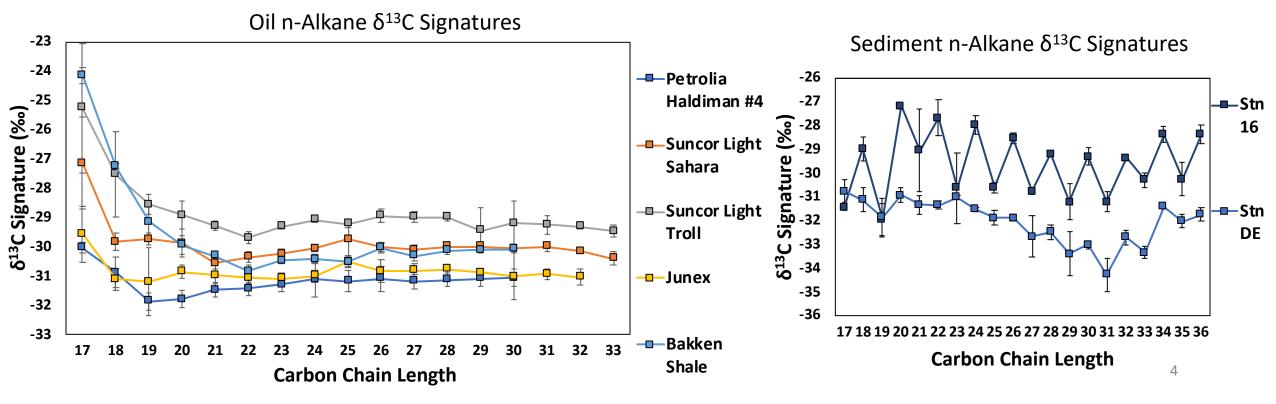

¹Léticia Dupont, ¹Anic Imfeld, ^{1,2}Alexandre Ouellet, ¹Yves Gélinas ¹Concordia University, 7141 Sherbrooke West, Montréal, Québec, Canada, H4B 1R6 ²Centre d'expertise en analyse environnementale du Québec, 850 Boulevard Vanier, Laval, Québec, Canada H7C 2M7

Introduction

St. Lawrence River/Estuary

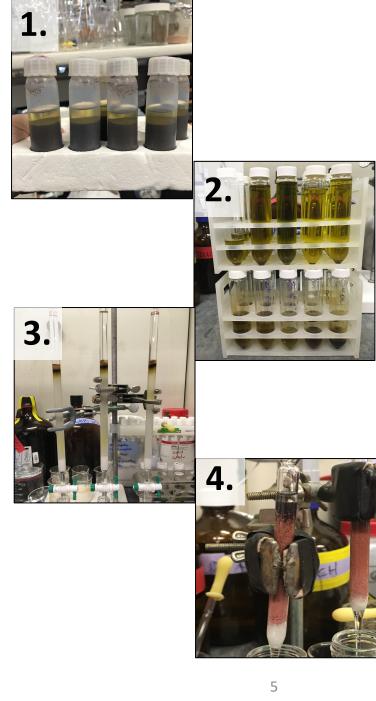

- Large quantities of petroleum hydrocarbons in the form of crude oil and dilbit are transported through the St. Lawrence River, Estuary and Gulf
- Risk of spills from tanker transport will increase in the coming years due to governments interest in transporting petroleum by ships rather than railroads
- There is an increased need for source identification for determining contamination presence and levels

Introduction


Diagnostic Ratios

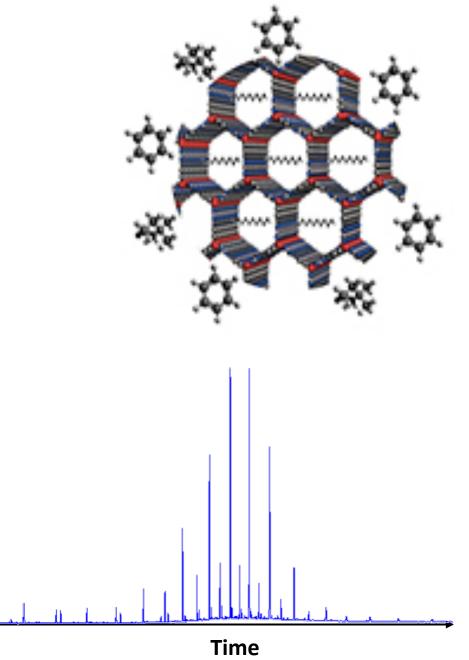
- Straight-chain n-alkanes can originate from natural or petroleum-derived sources
- Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants, originating from natural (biomass burning, volcanism, diagenesis) and anthropogenic (fossil fuels, etc.) processes
- Diagnostic ratios have been used for hydrocarbon source identification to differentiate terrestrial from marine and biogenic from petrogenic

Research Goals


- Evaluate the effectiveness of n-alkane and PAH diagnostic ratios and n-alkane δ¹³C signatures in detecting crude oil contamination
- Determine the level of contamination at which a significant difference in the diagnostic ratios and isotopic signatures is detected

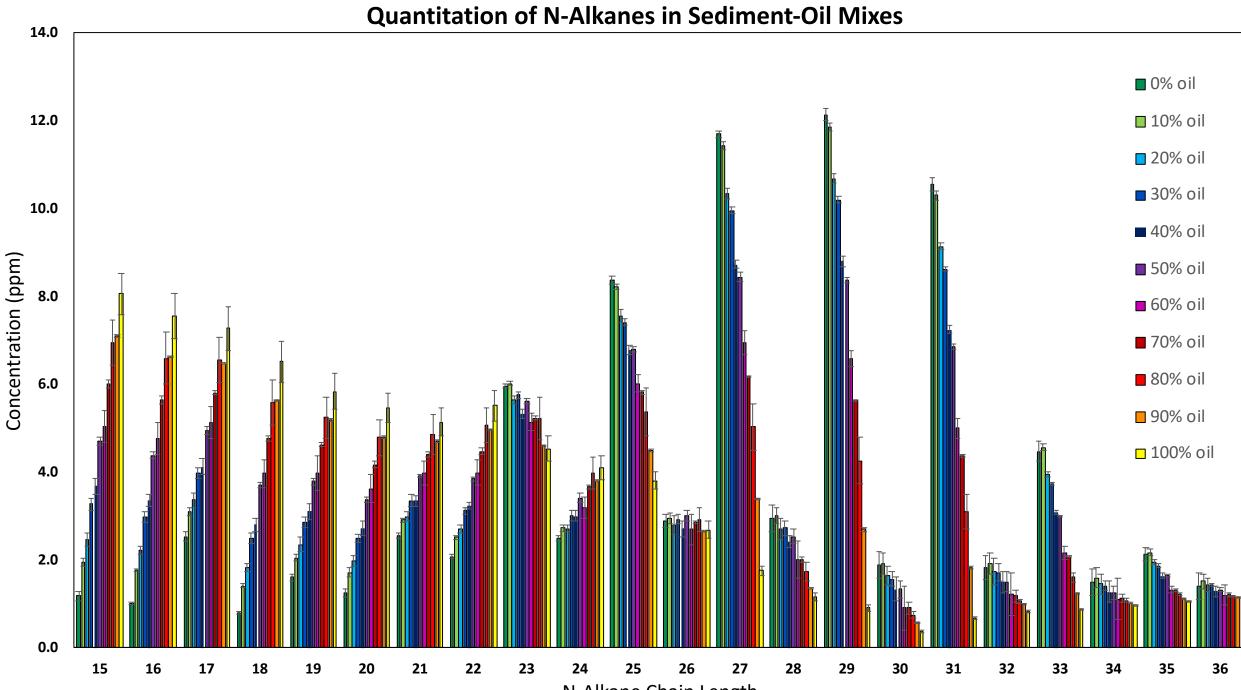
Methods

Sample Preparation


- 1. Extraction of sediment from the St. Lawrence River (Station G) using acetone and hexane, sonicated for 3hrs
- 2. Liquid-liquid extraction (x3) to separate aqueous and organic phases
- 3. Silica gel column chromatography of sediment organic phase and crude oil to separate the aliphatic and aromatic fractions
- 4. Copper column on aliphatic fractions to remove elemental sulphur
- 5. Quantitation of hydrocarbons in sediment and oil samples using external standards and GC-FID, equalizing of the hydrocarbon concentrations between the two sample types, and then mixed at varying levels (0-100% oil)

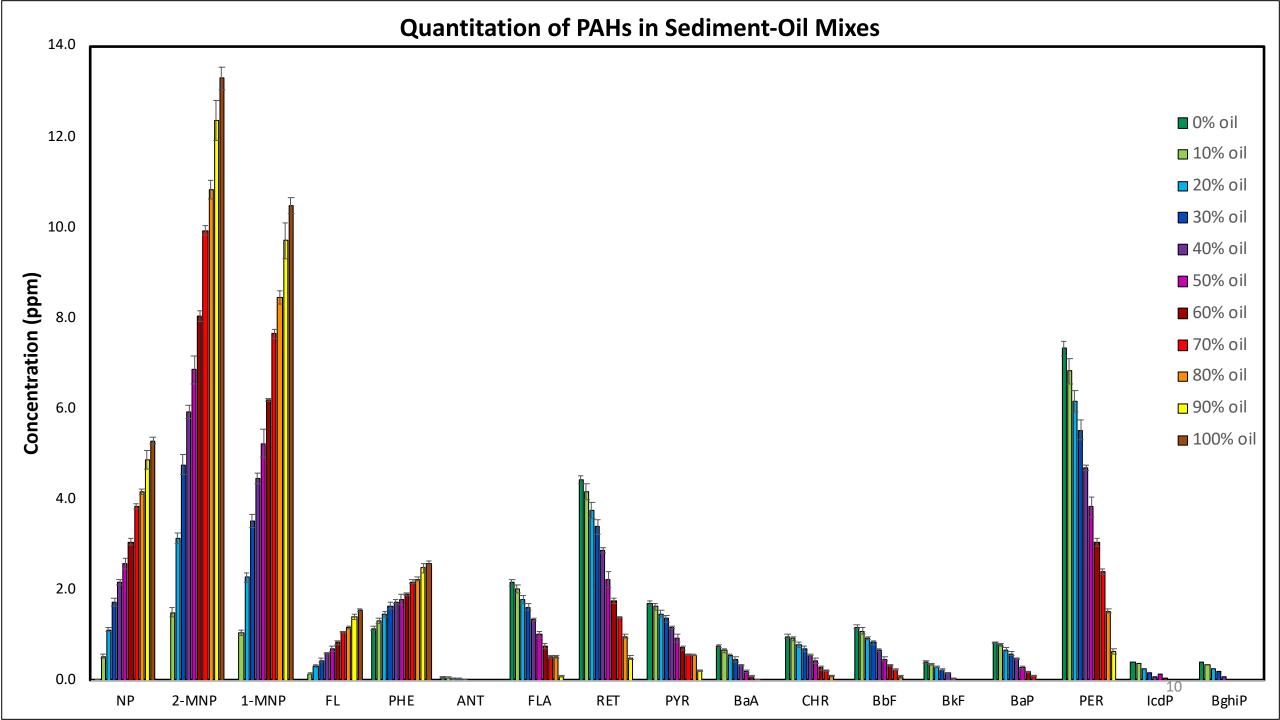
Methods

Analysis

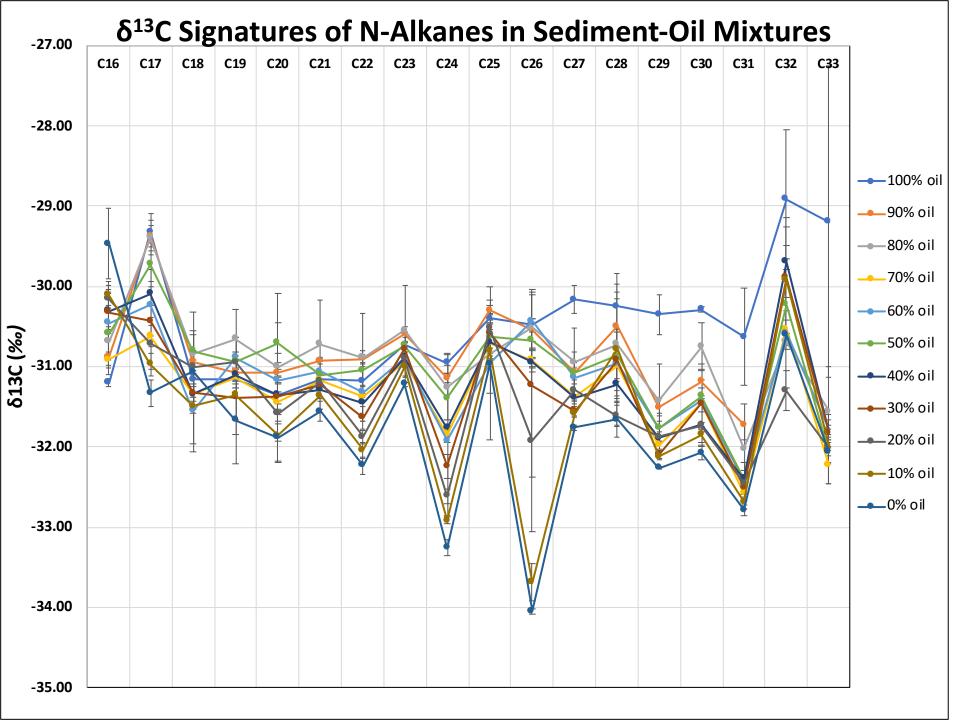

- 1. Individual compounds in mixed samples were identified using GC-MS and quantified with an external standard
- 2. Urea adduction was performed on the aliphatic fractions to separated the straight-chained alkanes
- δ¹³C signatures of n-alkanes were measured using GC-IRMS and quantified with certified external standards

ntensity

Abbreviations


РАН	Abbr.	РАН	Abbr.	Other	Abbr.	
Naphthalene	NP	Benzo(a)anthracene	BaA	Carbon Preference Index	СРІ	
2-Methylnaphthalene	2-MNP	Chrysene	CHR	Average Chain Length	ACL	
1-Methylnaphthalene	1-MNP	Benzo(b)fluoranthene	BbF	Natural n-Alkane Ratio	NAR	
Fluorene	FL	Benzo(k)fluoranthene	BkF	Terrestrial Aquatic Ratio	TAR	
Phenanthrene	PHE	Benzo(a)pyrene	BaP	Polycyclic Aromatic Hydrocarbons	PAHs	
Fluoranthene	FLA	Perylene	PER	Low Molecular Weight	LMW	
Retene	RET	Indeno(1,2,3-CD)pyrene	IcdP	Hight Molecular Weight	HMW	
Pyrene	PYR	Benzo(g,h,l,)perylene	BghiP	Dilbit	Diluted bitumen	

N-Alkane Chain Length


	Diagnostic Ratio	%Oil	Value	Diagnostic Ratio	%Oil	Value
Diagnostic Ratios of	CPI(25-33)	0%	4.26	ACL	0%	28.62
		10%	4.08		10%	28.64
n-Alkanes		20%	4.04		20%	28.60
		30%	3.84		30%	28.56
N-Alkanes Ratios:		40%	3.72		40%	28.49
		50%	3.41		50%	28.45
$\Sigma(C - C) \rightarrow \Sigma(C - C) \rightarrow C$		60%	3.30		60%	28.28
$CPI_{23-33} = \frac{\sum (C_{23} - C_{31})_{odd} + \sum (C_{25} - C_{33})_{odd}}{2 \cdot \sum (C_{24} - C_{32})_{even}}$		70%	2.89		70%	28.23
		80%	2.45		80%	28.03
ACL=		90%	1.93		90%	27.82
$(25 \bullet C_{25}) + (27 \bullet C_{27}) + (29 \bullet C_{29}) + (31 \bullet C_{31}) + (33 \bullet C_{33})$		100%	1.13		100%	27.29
$C_{25}+C_{27}+C_{29}+C_{31}+C_{33}$		0%	0.55		0%	6.46
		10%	0.52		10%	4.74
NAR= $\frac{\sum (C_{19} - C_{32}) - 2 \cdot \sum (C_{19} - C_{32})_{even}}{\sum (C_{19} - C_{32})}$		20%	0.50		20%	3.69
$\sum (C_{19} - C_{32})$		30%	0.47		30%	2.84
		40%	0.44		40%	2.27
$C_{27}+C_{29}+C_{31}$	NAR	50%	0.39	TAR	50%	1.76
$TAR = \frac{C_{27} + C_{29} + C_{31}}{C_{15} + C_{17} + C_{19}}$		60%	0.36		60%	1.31
Legend Undefined		70%	0.31		70%	0.99
Marine or petrogenic		80%	0.24		80%	0.66
Petrogenic	4	90%	0.17		90%	0.42
El Nemr, A.; Moneer, A. A.; Ragab, S.; El Sikaily, A.		100%	0.06		100%	0.16

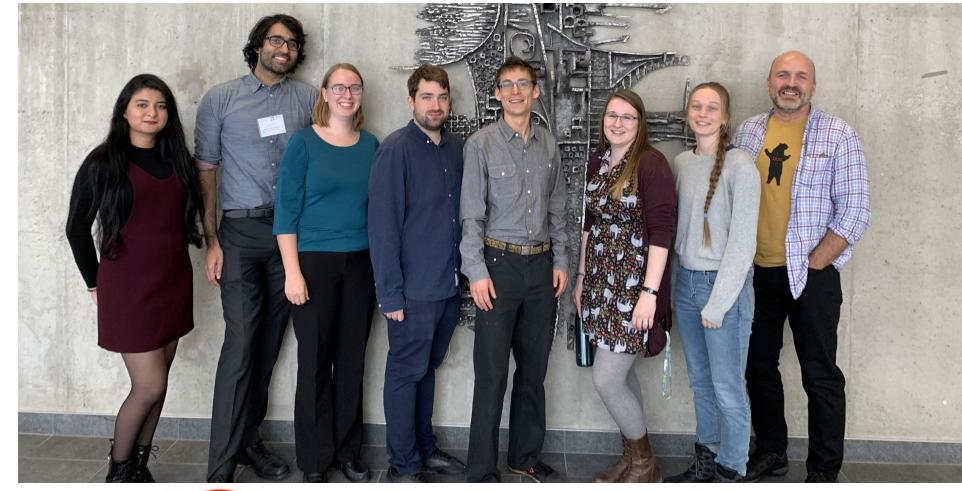
Egypt. J. Aquat. Res. **2016**, *42* (2), 121–131.

		Diagnostic Ratio	%Oil	Value	Interpretation	Diagnostic Ratio	%Oil	Value	Interpretation	
Diagnostic		0%	0.35			0%	0.56	Grass, wood, coal burn.		
Diagnostic		10%	0.58	Pyrogenic		10%	0.55			
of PAHs			20%			0.92	20%		0.55	
			30%	1.33			30%		0.54	
0117(115			40%	1.86	-	0	40%	0.54		
		lmw/hmw	50% 60%	2.63 4.00	Detrogenie	fla/fla+pyr	50% 60%	0.52 0.51		
			70%	6.42	Petrogenic		70%	0.31		
PAH Ratios:			80%	10.00			80%	0.48	Fossil fuel combustion	
			90%	33.42	1		90%	0.28	Petrogenic	
∑LMW (≤3 rings)	FLA		100%		N/A		100%		N/A	
∑ HMW (≥4 rings)	FLA+PYR		0%		N/A		0%	2.87	Aluminum smelters	
			10%	1.14	Undefined	bbf/bkf	10%	3.11	Undefined	
			20%	2.16			20%	3.21		
2–MNP	BbF		30%	2.88	Fossil fuels		30%	3.51		
			40%	3.41			40%	4.12		
PHE	BkF RET	2mnp/phe	50%	3.87			50%	11.18		
			60%	4.23			60%		N/A	
BaA			70%	4.56			70%			
			80%	4.85			80%			
BaA+CHR	RET+CHR		90%	4.98			90%			
			100%	5.13			100%	0.02		
			0%	0.43			0%	0.82		
Tobiszewski, M.; Namieśnik, J. <i>Environ. Pollut.</i> 2012 , <i>162</i> , 110–119. Dickhut, R. M.; Canuel, E. A.; Gustafson, K. E.; Liu, K.; Arzayus,			10% 20%	0.42	Combustion/ Vehicle emisssion	ret/ret+chr	10% 20%	0.82 0.83	Undefined	
			30%	0.42			30%	0.83		
			40%	0.37			40%	0.84		
		baa/baa+chr	50%	0.32	Coal combustion		50%	0.84		
			60%	0.26			60%	0.86		
K. M.; Walker, S. E.; Edgecombe, G.; Gaylor, M. O.;			70%	0.08	Petrogenic		70%	0.87		
MacDonald, E. H. <i>Environ. Sci. Technol.</i> 2000 , <i>34</i> (21), 4635– 4640. Yan, B.; Abrajano, T. A.; Bopp, R. F.; Chaky, D. A.; Benedict, L. A.; Chillrud, S. N. <i>Environ. Sci. Technol.</i> 2005 , <i>39</i> (18), 7012–			80%		N/A		80%	0.91	Wood burning	
			90%				90%		N/A	
			100%				100%			
7019								11		

7019.

• While this first run shows promise for using isotope signatures to differentiate natural and petroleum-based hydrocarbons (e.g. C22 and C24), the difference in δ^{13} C signature is not significant enough to tell, since Station G is likely somewhat contaminated, and the 100% oil replicates show a wide spread.

Conclusions and Future Work


- Diagnostic ratios detect a difference in hydrocarbon composition starting at 30% contamination, demonstrating that they are not discerning enough to determine the extent of crude oil contamination in sediments
- The isotope portion of this experiment needs to be rerun with a more marine, less contaminated sediment (e.g. Station 16)
- The molecular and isotopic fingerprints, as well as temporal variations of sedimentary hydrocarbons along the St. Lawrence River, Estuary and Gulf can be mapped to track future changes due to contamination

Acknowledgements

Supervisor: Dr. Yves Gélinas

Lab Members: Anic Imfeld Fred Leone Alex Tétrault Maroua Essifi Nav Kooner

Développement durable, Environnement et Lutte contre les changements climatiques

14