# Laboratory calibration of different soil moisture sensors in various soil types

Urša Pečan<sup>1</sup>, Damijana Kastelec<sup>1</sup>, Marina Pintar<sup>1</sup> <sup>1</sup>University of Ljubljana, Biotehnical Faculty, Slovenia

Univerza *v Ljubljani Biotehniška* fakulteta





8.5.2020



#### Introduction

- technological innovations enable more sustainable agricultural management
- agricultural practices based on measurements of different soil and plant parameters can decrease the amount of used inputs
- irrigation management based on measurements of soil water content is increasingly used in agriculture





#### Soil water content measurements

- measurements of soil water content ( $\theta$ ) are most commonly conducted with dielectric sensors
- indirect method which measures relative permittivity  $(\mathcal{E}_r)$  $\mathcal{E}(water) = 80, \mathcal{E}(soil matrix) = 2-5, \mathcal{E}(air) = 1$
- manufacturer supplied calibration function (converts raw outputs of sensor  $\rightarrow \theta$ )
- variable soil characteristics, such as soil texture and mineralogy, organic matter content, soil bulk density, EC influence measurements with dielectric sensors
- therefore manufacturer's calibration function might not work well in various soil types



## Aim of the study

The aim of our study was to evaluate whether there is a need for a soilspecific calibration of dielectric sensors when used in various soil types

We evaluated the performance of three dielectric soil moisture sensors in nine different soil types:

- SM150T (Delta-T Devices Ltd, UK), FD; capacitance: <u>left</u>
- MVZ 100 (Eltratec trade, production and services d.o.o., SI), supposedly TDR: <u>middle</u>
- TRIME-Pico 32 (IMKO micromodultechnik GmbH, DE), TRIME (Time Domain Reflectometry with Intelligent Micromodule Elements): <u>right</u>





INGLWS

picture source: IMKO Micromodultechnik, 2009

#### Materials and methods

- we conducted a laboratory calibration for an undisturbed soil samples, proposed by (Holzman et al., 2017):
- instead of obtaining an undisturbed soil sample with a cylinder of a known and sensor type suitable volume, due to possible soil variability, we used disturbed and homogenized soil samples, packed to their original bulk density in PVC cylinders
- we saturated soil samples with water
- inserted a sensor in each sample and left it in laboratory to dry on the air
- at certain time intervals we simultaneously obtained sensor's raw output and weighted the whole sample, together with the sensor, for the latter gravimetric determination of  $\theta$





• we used 9 soils with variable soil properties:

Table 1: properties of selected soil types

| Soil | Sand (%) | Silt (%) | Clay (%) | Texture             | $ ho_{ m b}$ (g cm <sup>-3</sup> ) | Organic<br>matter (%) | EC (dS m⁻¹) | CEC (mmolc<br>100g <sup>-1</sup> ) | pH<br>(CaCl₂) |
|------|----------|----------|----------|---------------------|------------------------------------|-----------------------|-------------|------------------------------------|---------------|
| TER  | 5.8      | 22.4     | 71.8     | clay                | 1.22                               | 0.5                   | 0.014       | 44.44                              | 4.4           |
| BFN  | 21.9     | 46.7     | 31.4     | clay loam           | 1.31                               | 4.1                   | 0.092       | 23.97                              | 7.0           |
| PAN  | 29.3     | 40.2     | 30.5     | clay loam           | 1.32                               | 3.1                   | 0.188       | 17.91                              | 6.1           |
| DRA  | 8.1      | 49.6     | 42.3     | silty clay          | 1.00                               | 4.3                   | 0.147       | 38.49                              | 7.1           |
| EVR  | 68.8     | 20.3     | 10.9     | sandy loam          | 1.42                               | 1.9                   | 0.067       | 6.36                               | 7.5           |
| KAR  | 37.0     | 44.3     | 18.7     | loam                | 1.70                               | 0.7                   | 0.093       | 9.56                               | 7.5           |
| TUR  | 15.5     | 51.4     | 33.1     | silt clay loam      | 1.54                               | 0.7                   | 0.077       | 19.96                              | 7.0           |
| TUN  | 43.3     | 30.2     | 26.5     | loam - clay<br>loam | 1.59                               | 2.3                   | 0.196       | 14.67                              | 6.9           |
| SOT  |          |          |          | organic             | 0.45                               | 45.9                  | 0.488       | 128.08                             | 6.3           |



### Experimental design

- 3 dielectric sensor types
- 9 soil types
- 3 repetitions for each soil and sensor type













regression analysis  $\rightarrow$  developed calibration function  $\rightarrow$  for each sensor and soil type  $\rightarrow$  $\rightarrow$  calculated measurement error (ME) $\rightarrow$ 

 $\rightarrow$  between sensor  $\theta$  and gravimetric  $\theta$ 



Figure 1: Comparison of soil water content obtained with manufacturer supplied calibration function and gravimetrically determined water content, for soil \_\_\_\_\_\_types EVR, DRA and BFN and sensor types: MVZ 100, Eltratec (left column), SM150T, Delta-T (middle column) and TRIME Pico-32, IMKO (right column)



Results





Figure 2: Comparison of soil water content obtained with manufacturer supplied calibration function and gravimetrically determined water content, for soil <u>types SOT</u>, PAN and KAR and sensor types: MVZ 100, Eltratec (left column), SM150T, Delta-T (middle column) and TRIME Pico-32, IMKO (right column)







Table 4: Soil properties

| Soil | Clay (%) | Texture             | ρ <sub>b</sub><br>(g cm <sup>-</sup> 3) | Organic<br>matter (%) | EC (µS cm⁻¹) | $\theta$ at tension<br>33 kPa (m <sup>3</sup> m <sup>-3</sup> ) |
|------|----------|---------------------|-----------------------------------------|-----------------------|--------------|-----------------------------------------------------------------|
| TUR  | 33.1     | silt clay<br>Ioam   | 1.54                                    | 0.7                   | 77           | 0.49                                                            |
| TUN  | 26.5     | loam –<br>clay loam | 1.59                                    | 2.3                   | 196          | 0.33                                                            |
| TER  | 71.8     | clay                | 1.22                                    | 0.5                   | 14           | 0.53                                                            |

Figure 3: Comparison of soil water content obtained with manufacturer supplied calibration function and gravimetrically determined water content, for soil types TUR, TUN and TER and sensor types: MVZ 100, Eltratec (left column), SM150T, Delta-T (middle column) and TRIME Pico-32, IMKO (right column)



#### Conclusions

- <u>MVZ 100 sensors</u>: consistently overestimated  $\theta$  in drier conditions. In the case of organic soil SOT, sensors consistently underestimated  $\theta$
- <u>TRIME Pico-32 sensors</u>: in general relative ME increased with drying of the soils, with an exception of DRA, TER and SOT soil types. Sensor consistently overestimated  $\theta$  with KAR and TUR soil types. In the case of mineral soil TER and DRA and organic SOT, sensors underestimated the actual water content
- <u>SM150T sensors</u>: relative ME oscillated around zero (soil types: PAN, BFN, DRA, TUN). In TER soil type, obtained values were higher than actual at more saturated soil conditions. We obtained higher values than actual in KAR and TUR soil type at drier conditions
- from all combinations of sensors and soils, only measurements with SM150T were within the manufacturer specified error ( $\pm$  0.03 m<sup>3</sup> m<sup>-3</sup>) in three soil types: BFN, TUN and EVR. In all other combinations of sensors and soils, soil-specific calibration is required to obtain relevant soil water content data in the field, since incorrect measurements of  $\theta$  can have a significant negative impact on irrigation management

remark: TRIME Pico-32, were not recalibrated in the calibration set, after being used in the field for several years, as recommended by the manufacturer – since we lacked the necessary equipment.





## Thank you!

#### Calibration protocol:

• Holzman, M., Rivas, R., Carmona, F., & Niclos, R. (2017). A method for soil moisture probes calibration and validation of satellite estimates. Methodsx, 4, 243–249. https://doi.org/10.1016/j.mex.2017.07.004

#### Picture source:

- Delta-T Devices. (2016). User manual for the SMT150T soil moisture sensor. Delta-T Devices, Cambrige, UK https://www.delta-t.co.uk/wp-content/uploads/2017/01/SM150T-user-manual-version-1.0.pdf
- IMKO Micromodultechnik. (2009). Trime Pico 64/32 Manual. IMKO Micromodultechnik GmbH, Ettlingen, Germany

https://www.eijkelkamp.com/files/media/Gebruiksaanwijzingen/EN/m1-146503-06epicosensors.pdf

