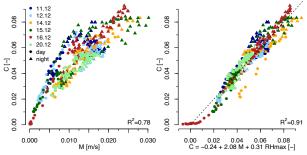

(1) Motivation and background

In many GCMs, the trade-cumulus cloud feedback is driven by changes in the cloud fraction at cloud base (C). Using LES and observations, we aim at better understanding the sensitivity of C to changes in convective mixing and the environment.

The cumulus-valve mechanism holds that the convective mass flux M acts like a valve, which maintains the sub-cloud layer top h close to the lifting condensation level LCL [1,2]. M may thus limit variations in humidity and cloudiness at h [2,3]. Defining $M=a_{co}\cdot w_{co}^*$, and assuming that the increase in M needed to relax h to the LCL is driven by a_{co} , the mechanism could also explain a larger C with increasing M—opposite to what many GCMs do [4,5].

*where a_{co} and w_{co} are the cloud-core area fraction and vertical velocity

Illustration of mass budget and valve mechanism, with h, M, entrainment rate E, large-scale vertical velocity W, as well as the LCL and surfacebuoyancy flux F_b


(3) M set by mass budget

Previous analyses of the mass budget indicate that an equilibrium estimate M_{mb} =E+W captures well the magnitude and variability of M=a_{co}·w_{co} [6].

(2) Relationship of cloud-base mass flux and cloud fraction

Does C increase with M in realistic ICON-LEM simulations? Mostly yes! The maximum relative humidity at the mixed-layer top RH_{max} is an important additional control of C. During nighttime, increases in M often go along with decreases in RH_{max} , limiting C increases.

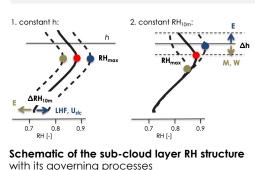
So what sets M and RH_{max}, and what controls their interaction?

Relationships in ICON-LEM. 150m resolution, averaged over a 1°x2° box near Barbados for 6 days in Dec 2013

(5) Conclusions

View from the French ATR aircraft flying at cloud base

In summary:


- C closely linked to M, but also RH_{max}
- M set by E and W
- RH_{max} depends strongly on h

How C depends on the environment, and the role of M and h variations in this dependence can soon be tested with EUREC⁴A observations.

A close look at the cumulus-valve mechanism and its potential implications for cloud-base cloudiness

Raphaela Vogel* and Sandrine Bony, LMD/IPSL, CNRS, Sorbonne University, Paris *raphaela.vogel@Imd.jussieu.fr

(4) What controls RH_{max}?

Assuming near well-mixedness, RH_{max} can be changed by (1) the surface RH and (2) the layer depth h.

E has a \downarrow (entraining dry and warm air) and an \uparrow (deepening h) effect on RH_{max}. Interestingly, the latter tends to win both in a simple mixedlayer model and in the ICON-LEM simulations, resulting in a net positive effect of E on RH_{max}. Adjusting h in response to a change in M is thus crucial to capture the dynamics.

References: [1] Betts 1976 | [2] Neggers et al. 2006 | [3] Nuijens et al. 2015 | [4] Sherwood et al. 2014 | [5] Vial et al. 2016 | [6] Vogel, Bony, Stevens 2020