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Parameter-dependent “bistable” systems

As subsystems of the climate system respond to changes in forcing,
tipping points may appear. Nonlinear feedbacks can cause the
“unperturbed" subsystem to have multiple stable states, and external
inputs can then cause the system to change between these states.

AIM: To develop an understanding of the predictability of tipping
between nontrivial attractors. In particular:

We present a notion of “physical measure” for nonautonomous
systems.
We use this to define a “tipping probability” between two
attractors.
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Parameter-dependent “bistable” systems

Consider a model “unperturbed” ODE for x on some manifold M:

ẋ = f (x;λ)

where λ is a parameter from some interval [λ−, λ+], with
“desirable state”, represented by an attactor Ades

λ ⊂ M

Udes
λ := interior of basin of attraction of Ades

λ

“undesirable state”, denoted by an attactor Aundes
λ ⊂ M

Uundes
λ := interior of basin of attraction of Aundes

λ

the “boundary” M \ (Udes
λ ∪ Uundes

λ ) a null set.
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Parameter shift and physical measures

Now consider the “forced” nonautonomous ODE

ẋ = f (x;λ(t))

with smooth λ : R→ [λ−, λ+] where λ(t)→ λ± as t → ±∞.

Definition. A physical measure is a time-dependent probability
measure µt (t ∈ R) on M such that for every continuous g : M → R
and every probability measure ρ on Udes

λ−
with smooth density, for all

t ∈ R, ∫
M

g(x(t)) ρ(dx(s))→
∫

M
g dµt as s → −∞.

Remark. Cf. (a) time-dependent invariant measures (Checkroun et
al. 2011), (b) parameter-shift driven systems (Drótos et al. 2015).
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Tipping probability

Definition. We will say that the probability of tipping is well-defined if
the physical measure (µt )t∈R exists;
µt (Udes

λ+
∪ Uundes

λ+
) = 1 for all (sufficiently large) t ;

limt→∞ µt (Uundes
λ+

) exists.
In this case, the probability of tipping is

p = lim
t→∞

µt (Uundes
λ+

).

Remark. If λ(t) converges sufficiently fast to λ− as t → −∞, then the
question of existence of the physical measure (µt )t∈R should be
reducible to whether the autonomous system ẋ = f (x;λ−) has a
physical measure supported on Ades

λ−
(details in preparation).
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Example: shifted double scroll

A prototype example is the double scroll system: a 3D system of
coupled ODEs (Chua et al. 1986) with bistability between a chaotic
“double scroll” attractor and a large amplitude limit cycle:

ẋ1 = F1(x1, x2, x3) := a(x2 − φ(x1))

ẋ2 = F2(x1, x2, x3) := x1 − x2 + x3

ẋ3 = F3(x1, x2, x3) := −bx2

for (x1, x2, x3) ∈ R3, where

φ(x) = x3/16− x/6.

Red tube shows basin boundary be-
tween attractors.
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Shifted double scroll – time-dependent
translation of origin to (1,1,0)Λ(rt)
where

Λ(s) = 1 + tanh(s).

Tipping from chaos to periodic seen as

the sharp growth of ν(t) =
√

9x2
2 + x2

3

around t = 0.

Top: ensemble of runs varying r .
Bottom: same shown colored by ν.



Deterministic parameter-drifting systems
Example: shifted double scroll

Further questions: random systems

Example: shifted double scroll

Blue – approximation of physical mea-
sure at time T = −5 for shifted double
scroll.

Red – basin boundary at T = −5 for
chaos in future system.

Tipping probability is mass of physical
measure that is exterior to red tube (i.e.
in basin of future periodic attractor).
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Example: shifted double scroll
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Probability of tipping p for shifted dou-
ble scroll system on varying rate r .

Note region of partial tipping

0 < p < 1

for 0.85 < r < 2.2.
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Further questions: random systems

Now consider a stationary white-noise-driven system on M, e.g.

dxt = f (xt ) dt +
n∑

i=1

σi (xt ) ◦ dW i
t

Theorem (Arnold 1998, Sec. 1.7)

Given any stationary probability measure ρ on M, for almost every
sample path ω of the noise there is a time-dependent probability
measure µωt (t ∈ R) on M such that for every continuous g : M → R,
for all t ∈ R, ∫

M
g(xt ) ρ(dxs)→

∫
M

g dµωt as s → −∞.

Similar results also hold for Markovian-coloured-noise-driven
systems (Crauel 1991, Newman 2020).



Deterministic parameter-drifting systems
Example: shifted double scroll

Further questions: random systems

Further questions: random systems

Under what conditions will we have that∫
M

g(xt ) ρ̃(dxs)→
∫

M
g dµt as s → −∞

for every probability measure ρ̃ with smooth density? (I.e. “when
can we regard (µωt )t∈R as a physical measure?”)

Can we use this to give useful predictions in parameter-drifting
random dynamical systems?

Can we apply these results to better quantify probabilities of
tipping in climate models? (cf. Ashwin & von der Heydt 2019)
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Thank you.
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