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Motivation:
Partitioning uncertainty of climate projections is important
to better understand them and to evaluate model
performance. It requires a clean separation of forced
response and internal variability, which has historically
been difficult due to the scarcity of large ensemble
simulations. With the advent of multiple Single-Model
Initial-Condition Large Ensembles (SMILEs) we can
scrutinize and overcome previous limitations.

Slide #1 | Main results:
• Forced response and internal variability can now be
separated robustly

• Model uncertainty in CMIP6 is larger than in CMIP5,
but this is reconciled with a performance-based
weighting that down-weighs models that clearly warm
too fast

Slide #2-3 | Technical bits:
• Bias is sizable when estimating the forced response
from insufficient number of ensemble members for
small spatial scales or noisy variables

• Models vary a lot in their magnitude of internal
variability – need for validation of models’ variability

• There are robust forced changes in internal variability
• The full CMIP5 spread is often well-represented by the
seven SMILEs

Uncertainty par44oning method Constraining CMIP5+6 projec4ons

Data and References

All Large Ensemble data is freely available from
Mul6-Model Large Ensemble Archive (MMLEA)

Lehner et al., 2020, Earth System Dynamics
Deser et al., 2020, Nature Climate Change

SMILE community website
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T = total uncertainty = M+I+S (Hawkins&Sutton, 2009, BAMS)
M = model uncertainty = variance across models’ forced response
I = internal variability = variance across time or ensemble members
S = scenario uncertainty = variance across scenarios

Fractional uncertainties: M/T, I/T, S/T

CMIP6 warms more than CMIP5, leading to seemingly larger model
uncertainty. Weighting the models by how well they fit the observed
1981-2014 warming (xobs) reduces CMIP6 model uncertainty and brings
CMIP5 and CMIP6 into closer agreement.
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CMIP5

CMIP6

Models with too much historic
warming show higher TCR.

An observational constraint is 
possible, as in Hawkins&Sutton 
(2009), by developing relative 
model weights Wm:
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What we used to do  (Hawkins&Sutton 2009)
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Estimate of forced response
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Residual or Internal variability
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Residual or Internal variability
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Multi-model means of forced responses
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Estimate forced response via a statistical fit, treat residual as internal variability.
This works well for time series that are naturally smooth due to spatial averaging,
like global mean temperature (above). It works less well at regional scales or for
noisy variables, like Southern Ocean temperature (below). This potential method
bias can affect the uncertainty partitioning, as internal variability gets erroneously
partitioned towards model uncertainty, and vice versa.

Example:
Global temperature 
from a single 
model,
3 scenarios

Forced response:
4th order 
polynomial fit to 
single simulation

Internal variability:
Residual from 
subtracting the fit
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Residual or Internal variability
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Multi-model means of forced responses
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Example:
Southern Ocean
temperature

Forced response:
Fit is strongly 
affected by decadal 
internal variability

Internal variability:
Underestimated by 
the method

To quantify the potential method bias in Hawkins&Sutton (2009), we repeat their
approach, but with a Single-Model Initial-Condition Large Ensemble (SMILE). We
treat each ensemble member from a SMILE as if it were a different model. Then
we calculate “model uncertainty” M (see slide #1). It should be zero, since all
ensemble members are actually from the same model. The degree to which this M
is not zero tells us about the method bias.
We can see that the potential bias is small for something like global temperature,
but can be significant for Southern Ocean temperature (below). To partition
uncertainty robustly at regional scales, we need SMILEs.
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Range of bias depending 
on which SMILE is used

What we can do now  (Lehner et al. 2020)
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Spatial patterns in SMILEs, CMIP5 and CMIP6

Decadal mean temperature
(a) SMILEs
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Importance of internal 
variability decreases 
with lead time

Importance of scenario 
uncertainty increases 
with lead time

Spatial patterns and fractions for uncertainty partitioning of temperature look similar between the SMILEs and CMIP5. The story is
different for precipitation (see the paper). Generally, CMIP6 shows larger model uncertainty than CMIP5 (as discussed also on slide #1),
which can also be seen by the global averages of each map given in the bottom-right corners.

https://www.earth-syst-dynam-discuss.net/esd-2019-93/
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Model differences in internal variability 

With SMILEs we can now estimate a model’s internal variability robustly. Models show substantial differences in their
magnitude of internal variability and thus also in how much internal variability contributes to the total uncertainty in climate
projections (white shading, above). For example, for Sahel monsoonal precipitation, models show large differences in internal
variability magnitude on decadal scales – need for observational constraint of models’ internal variability.

Range of 
possible 
contributions 
from internal 
variability

Fixed internal 
variability

Transient 
internal 
variability Forced 

decrease
in internal 
variability

Forced 
increase
in internal 
variability

Internal variability can be estimated for each point in time by calculating the variance across ensemble members of a SMILE.
This way, forced changes in variability can be detected against an assumption of historically fixed variability (compare dashed
and solid black line, left). We detect robust changes in variability of grid point precipitation, as well as interannual to decadal
temperature.

Forced changes of internal variability 

How representa4ve are the SMILEs of CMIP5?
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The seven SMILEs available on the
Multi-Model Large Ensemble
Archive (MMLEA) happen to be a
good representation of the CMIP5
archive (here 28 models).
This makes the SMILEs useful for
interpreting uncertainty partitioning
with CMIP5. Similar analysis for
CMIP6 is forthcoming.

Data and References

All Large Ensemble data is freely available from
Multi-Model Large Ensemble Archive (MMLEA)

Lehner et al., 2020, Earth System Dynamics
Deser et al., 2020, Nature Climate Change

SMILE community website

http://www.cesm.ucar.edu/projects/community-projects/MMLEA/
https://www.earth-syst-dynam-discuss.net/esd-2019-93/
https://www.nature.com/articles/s41558-020-0731-2
https://large-ensemble.github.io/

