

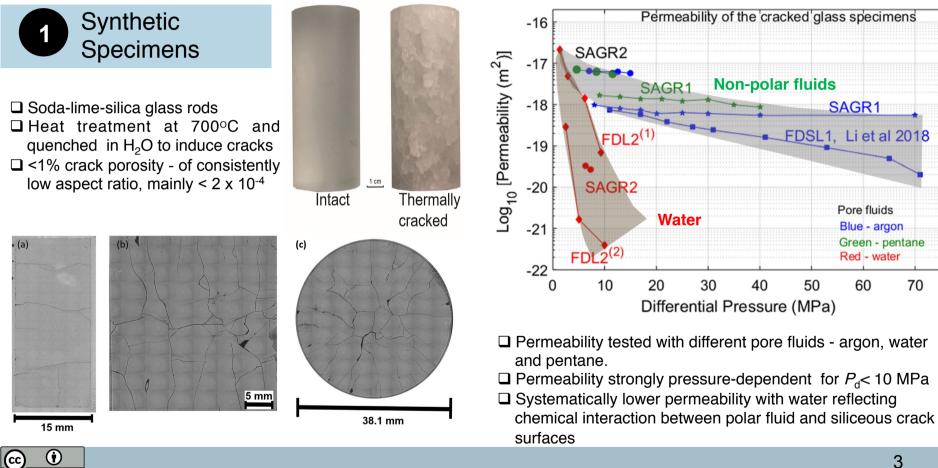
Poroelastic relaxation in thermally cracked and fluid-saturated glass

Abdulwaheed Ògúnsàmì¹, Jan Borgomano², Jérôme Fortin², and Ian Jackson¹

¹Australian National University, Research School of Earth Sciences, Canberra, Australia (ian.jackson@anu.edu.au)

²Ecole Normale Supérieure/CNRS, UMR8538, PSL Research University, Paris, France, Laboratoire de Géologie

Ògúnsàmì, A., Borgomano, J. V. M., Fortin, J., & Jackson, I. (2020). Poroelastic relaxation in thermally cracked and fluid-saturated glass. *Journal of Geophysical Research: Solid Earth*, 125, e2019JB018890. <u>https://doi/10.1029/2019JB018890</u>

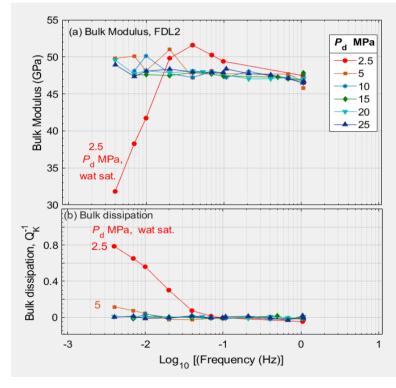

Australian National University	Talk Outline	Approach & Findings
Abstract 1	Synthetic specimens	Thermally cracked (soda-lime-silica) glass rod with crack porosity only ($\phi < 1\%$)
To test the theoretical model of modulus dispersion in fluid-saturated cracked media, we examined the mechanical properties of four thermally cracked glass specimens of simple microstructure using complementary forced-oscillation (0.004-100 Hz) & ultrasonic techniques (~1 MHz).	2 Permeability te	In situ prior permeability measurements guarantee full-saturation conditions for mechanical testing
We test the hypothesis that broadband mechanic behaviours of such synthetic specimens under fluid saturated conditions should reveal the distinct fluid flo regimes due to fluid flow within the crack network and th consequent moduli dispersion and associated attenuation	Drainage f	flow Oscillation of confining pressure shows bulk modulus dispersion and dissipation localised near 2 mHz, only @ $P_d = 2.5$ MPa
peak. The results indicate that in such fluid-saturated crack only medium, squirt flow will result only in the dispersion of the shear modulus. Our findings illustrate the effect of cracks on moduli dispersion, support the effective medium theory with low aspect ratios cracks and validate the predictions from theoretical models of moduli dispersion.	k- of m 4 Squirt f	IOW Extensional and torsional oscillation tests reveal dispersion & dissipation in shear near 0.3 Hz for $P_d < 10$ MPa

Microstructure and flow properties

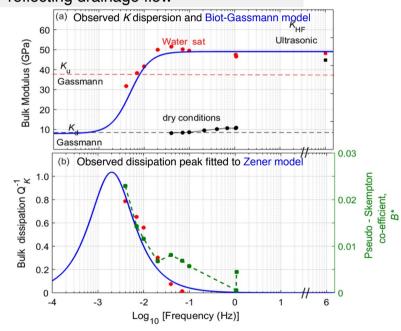
Australian

National University

Permeability 2



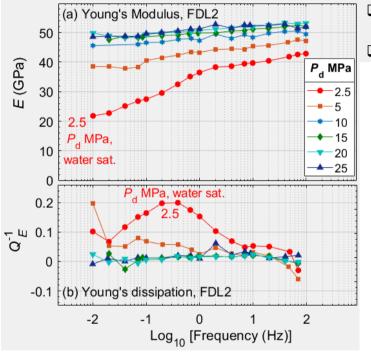
 $(\mathbf{\hat{i}})$

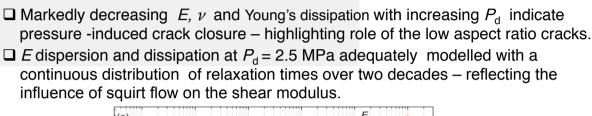

Confining pressure oscillation test Bulk modulus dispersion and dissipation for water-saturated conditions

3 Drainage flow

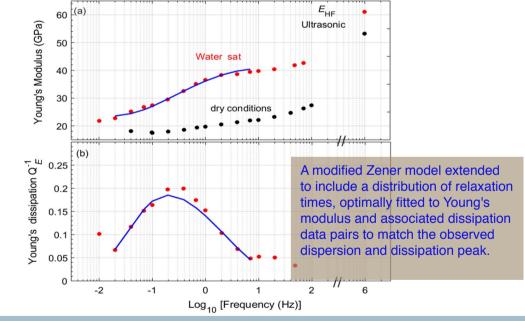
- □ Strong bulk modulus dispersion & dissipation only @ lowest P_d = 2.5 MPa
- □ Associated variation of pseudo-Skempton coefficient $B^* = \delta P_f / \delta P_c$ confirms fluid flow between specimen and external reservoir

□ *K* dispersion and dissipation centred near 2 mHz, well described by Zener model – reflecting drainage flow


4

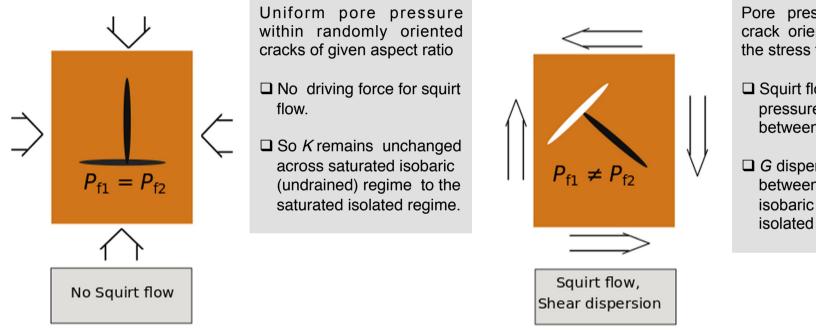


Axial stress oscillation test


Young's modulus dispersion and dissipation for the water-saturated conditions

4 Squirt flow

 \Box *E* dispersion and dissipation at P_{d} = 2.5 MPa peak near 0.3 Hz



Squirt flow and Dispersion in crack-only porous medium

Pure Shear stress

Hydrostatic pressure

Pore pressure varies with crack orientation relative to the stress field

- Squirt flow driven by pore pressure gradients between adjacent cracks.
- G dispersion occurs between the saturated isobaric and saturated isolated regimes.

Effective elastic response for a medium containing only cracks, of random orientation with a given aspect ratio α, under hydrostatic compression (left) and shear stress (right). *P*_{f1}and *P*_{f2} are the pore fluid pressures in representative cracks with diverse orientation relative to the applied stress

Summary and outlook

Permeability and seismic properties have been measured with complementary techniques on a suite of thermally cracked glass specimens

The fluid saturated specimens show frequency dependent properties – first evidence of both drainage and squirt flow transition in a synthetic cracked medium

Our findings present new insight into the seismic properties of a fluidsaturated synthetic medium which contains only cracks with a narrow distribution of aspect ratios

Future work involves the testing the broadband seismic properties of fluidsaturated sintered glass beads specimens – cracked and intact.

