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Constraints on glacier bedrock roughness from spectral analysis of glacier forefields
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Motivation Methods Regelation Models

Elevation data was compiled from digital elevation models (DEMs) created from terrestrial lidar

scans, photogrammetry using photos from a drone, white light interferometer scans, and SETM sur- 18000 ! ! ! ! The regelation models by Lliboutry
. Viscous creep and regelation are the face models. Scales of DEMs range from ~1000 to 0.00001 m. We then calculated the mean along flow 16000 - @ ~ Nye-Kamb |/ (1968) and Nye (1970) are used to con-
s two main sliding mechanisms power spectra of the DEMs following the methods outlined by Perron et al., 2008. Natural terrains OO — LI'bOUt/r,y strain the proportion of basal drag at-
thought to control ice flow over a tend to increase in amplitude with longer wavelengths and is commonly fitted with an inverse-power 14000 - %ﬁ e - tributed to regelation. Lliboutry’s
. hard bed. Most sliding models only law of the form P(f) =¢f~* or P(f) = yYf —(1+2hy) Where P is the spectral power, fis frequency, vy is 19000 | o o e | model accounts for the non-linear rhe-
¢ consider the creep component and a constant, P is the spectral slope and /u is the Hurst exponent (note that g = 1+ 2h,). 'S oy // | ology of ice and the presence of cavi-
assume the effects of regelation are T 10000 | > // P ties behind bumps in the bed. Nye’s
) negligible. However, recent studies Forefields constitute a variety of differing lithologies and tectonic regimes. Two forefields are from ex- /E 5000 | 230 /,///' | (1970) model is designed to solve for
¢ (Hansen and Zoet, 2019; Rempel posed bedrock that was glaciated by ice streams, while the other forefields are near valley glaciers. V 7 /Q//‘/ basal stress using the surfaces peri-
and Meyer, 2.0 19) have shown. that 6000 /’///'// %(/ | odogram but assumes a Newtonian
% the drag attributed to regelation . 2000 | P 64\‘-\ _ rheology for the ice and ignores the
¢ may .be slubtsl:antllz::l)i_llarger that1.1 005 =47 6@ attects of cavities. Both models assume
revious ought. Here we esti- . : -7 ] :
ﬁlate e fnagnitgude of drag acting - Figure 3 (left): Digital elevation 2000 7 & clean t.emperz}te ice and a small water
: on the bed due to regelation by eval- 0.2 model of a striated sample from Cas- o . . . . ﬁl.m .Wlth a thickness 0(10.'6 m) that
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Figure 2: Shaded relief maps of ten valley glacier forefields used in this study. Ice flow
direction is from left to right across the x-axis.




