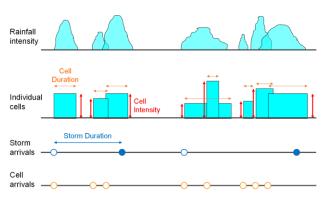
Modelling sub-hourly rainfall extremes with short records - a comparison of MEV, Simplified MEV and point process methods

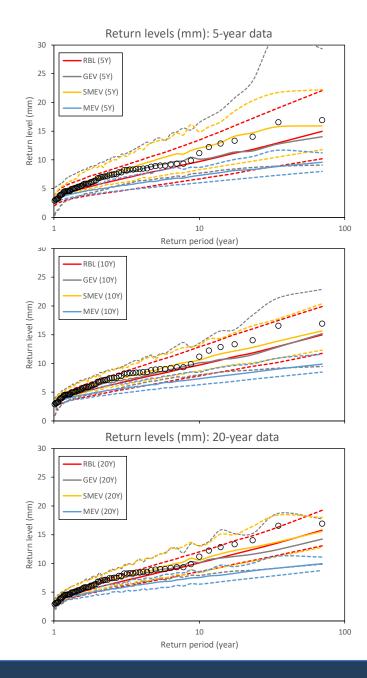
Li-Pen Wang^{1,3}, Francesco Marra^{2,4} & Christian Onof¹

¹Imperial College London, ²Institute of Earth Sciences, ³National Taiwan University, ⁴CNR-ISAC

Imperial College London

Metastatistical Extreme Value (MEV) framework relaxes the asymptotic assumption of traditional AM methods. MEV considers, year by year, the full distribution of the underlying ordinary events and their number of occurrences.


Simplified MEV (SMEV, a variant of MEV) further neglects the inter-annual variability, in favour of simpler parametrisation and more robust parameter estimation.


Randomised Bartlett-Lewis rectangular Model (RBL), based upon point process theory, represents the temporal rainfall process in a realistic yet simple way, such that the hierarchical structure of rainfall is explicitly incorporated, and several parameters have a physical interpretation.

$$MEV(x) = \frac{1}{M} \cdot \sum_{j=1}^{M} \left[\prod_{i=1}^{S} \left[F_i(x; \theta_{i,j}) \right]^{n_{i,j}} \right]$$

(Marani, M. & Ignaccolo, M., 2015)

$$SMEV(x) = \prod_{i=1}^{S} \left[F_i(x; \theta_i) \right]^{n_i}$$
(Marra, F. et al., 2019)

Experiment

- The scenarios where sub-hourly rainfall time series data are available with various short lengths (i.e. 5/10/15/20 years) were resembled.
- MEV, SMEV and RBL and the traditional GEV were compared against observed rainfall extremes at 5min timescale.

Main Findings

- GEV appears to be very sensitive to data length. It requires more than 20 years of data to reach similar performance to other models.
- MEV totally fails in reproducing sub-hourly rainfall extremes, in spite of being insensitive to data length.
- SMEV generally has the best fit to sub-hourly rainfall extremes and is much less sensitive to data length.
- RBL slightly underestimates sub-hourly rainfall extremes, as compared to SMEV, but it is even less sensitive to data length. In addition, RBL has the advantage of preserving rainfall extremes across multiple timescales (i.e. from sub-hourly, hourly to 1day) at the same time