Fast Analytical Models for Texture Evolution in Anisotropic Polycrystals

Neil M. RIBE Laboratoire FAST, Orsay (France)

Collaborators:

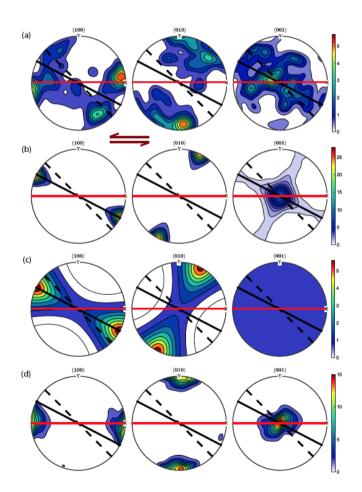
Olivier CASTELNAU (Paris)

Neil GOULDING (Bristol)

Ralf HIELSCHER (Chemnitz)

Andrew WALKER (Leeds)

James WOOKEY (Bristol)



Comprendre le monde, construire l'avenir®

Aim

Context: To predict seismic anisotropy from geodynamical models, we need to be able to calculate how crystal preferred orientation (CPO) evolves during progressive deformation

Difficulty: Self-consistent models (VPSC, SOSC) are too computationally expensive to include in 3-D convection codes

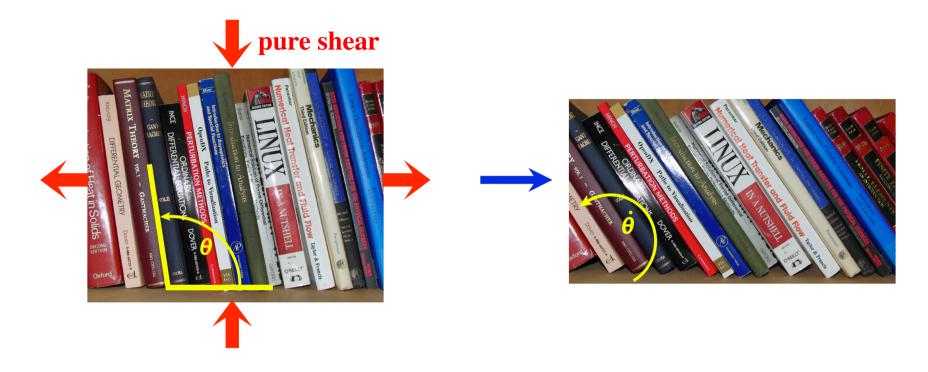
Photo: Tim Walker

This work:

Design faster algorithms based on:

- an analytical expression for crystallographic spin remodel ANPAR
- an economical analytical representation of CPO in terms of « structured basis functions » rodel SBFTEX

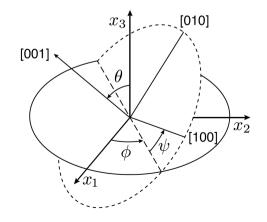
Mechanism of crystallographic rotation



Generalization to 3-D:

Orientation : three Eulerian angles $(\phi, \theta, \psi) \equiv g$

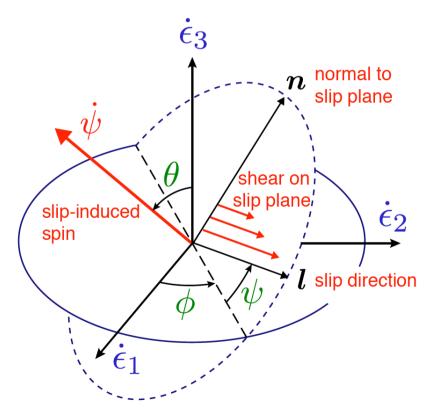
Spin :
$$(\dot{\phi}, \dot{\theta}, \dot{\psi}) \equiv \dot{g}$$



Analytical expression for crystallographic spin

Model: aggregate of crystals with one active slip system, deformed by triaxial straining

(principal strain rates $\dot{\epsilon}_1, \dot{\epsilon}_2, \dot{\epsilon}_3$)



Minimize difference of crystal and aggregate deformation rates

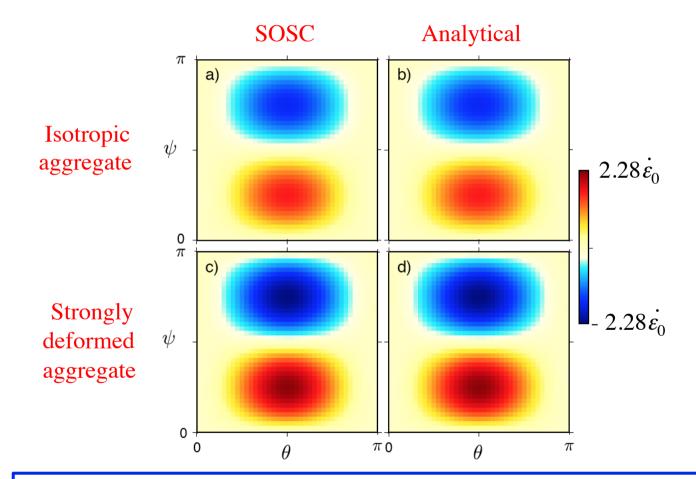
$$\begin{split} \dot{\psi} &= A \left\{ \frac{3}{4} \dot{\epsilon}_3 \sin 2\psi \sin^2 \theta \right. \\ &+ \frac{1}{8} (\dot{\epsilon}_2 - \dot{\epsilon}_1) [4 \sin 2\phi \cos \theta \cos 2\psi \\ &+ \cos 2\phi (\cos 2\theta + 3) \sin 2\psi] \right\} \end{split}$$

Amplitude A:

- = 5 if global strain rate compatibility is enforced
- = 1 if not enforced
- = intermediate if several slip systems are active

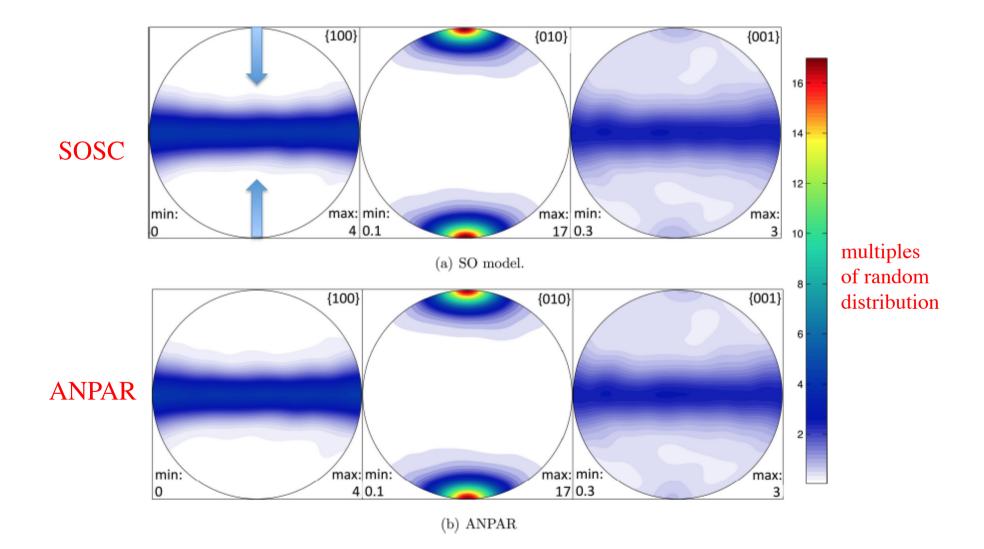
Analytical expression for the spin: Validation against SOSC

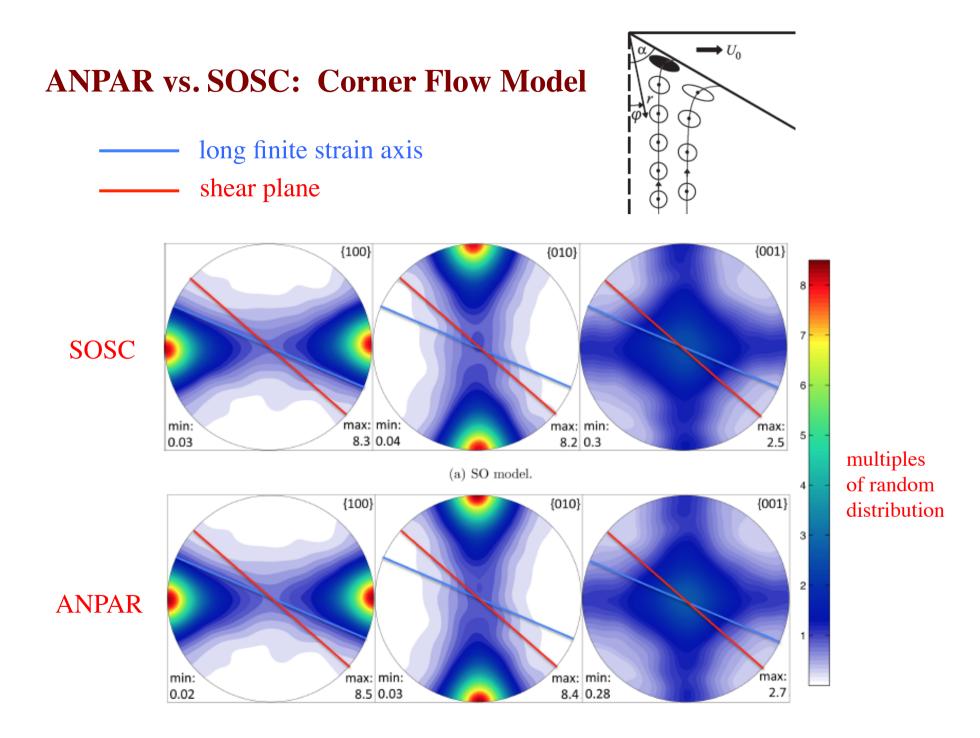
Test case: uniaxial compression (shortening rate $\dot{\varepsilon}_0$) *Quantity shown:* spin $\dot{\psi}$ for slip system (010)[100] of olivine



The analytical model reproduces *exactly* the orientation-dependenceof crystal spin predicted by the SOSC model

ANPAR vs. SOSC: Uniaxial compression (45% shortening) of an olivine polycrystal





Analytical description of CPO

Idea : represent CPO using « structured basis functions » that:

• satisfy automatically the symmetry of the imposed deformation

can represent arbitrarily sharp textures

• are analytical solutions of the evolution equation for the ODF:

$$\frac{\partial f}{\partial t} + \nabla \cdot (\dot{\boldsymbol{g}}f) = 0$$

Number of SBFs required

= Number of active slip systems

Structured basis functions

General form (for time-independent spin amplitude *A*):

 $f = f(\phi, \theta, \psi, A, c_1/c_2, c_2/c_3)$

Eulerian spin finite strains angles amplitude

Exact expression:

$$f = f_0 [\cosh A\Gamma - \sin 2(\psi - \chi) \sinh A\Gamma]^{-1}$$

$$\Gamma = \left[r_{12}^2 F^2 + (r_{12}G + r_{23}H)^2 \right]^{1/2}$$

$$\{ \cos 2\chi, \sin 2\chi \} = \Gamma^{-1} \{ r_{12}F, r_{12}G + r_{23}H \} \qquad r_{ij} = \ln(c_i/c_j)$$

$$F = -\sin 2\phi \cos \theta \qquad H = -\sin^2 \theta$$

$$G = \sin^2 \phi \cos^2 \theta - \cos^2 \phi$$

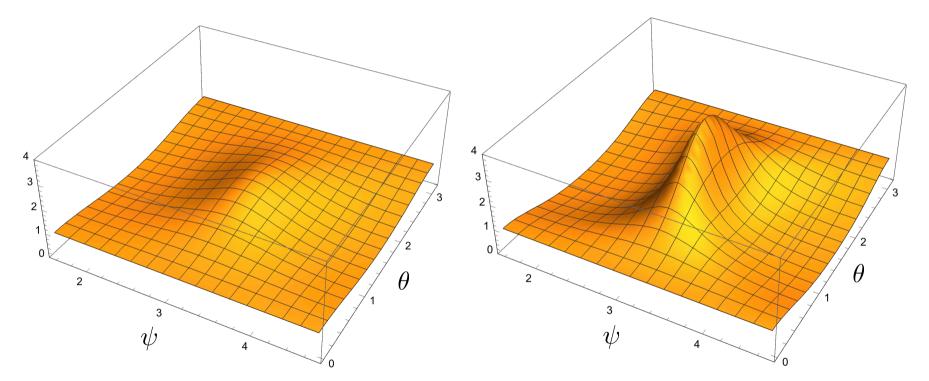
Interpretation:

SBF = virtual CPO produced by the action of a single slip system

Structured basis function vs. strain (uniaxial compression)

30% shortening

60% shortening



SBF automatically gets sharper as strain increases

SBF expansion of the orientation distribution function

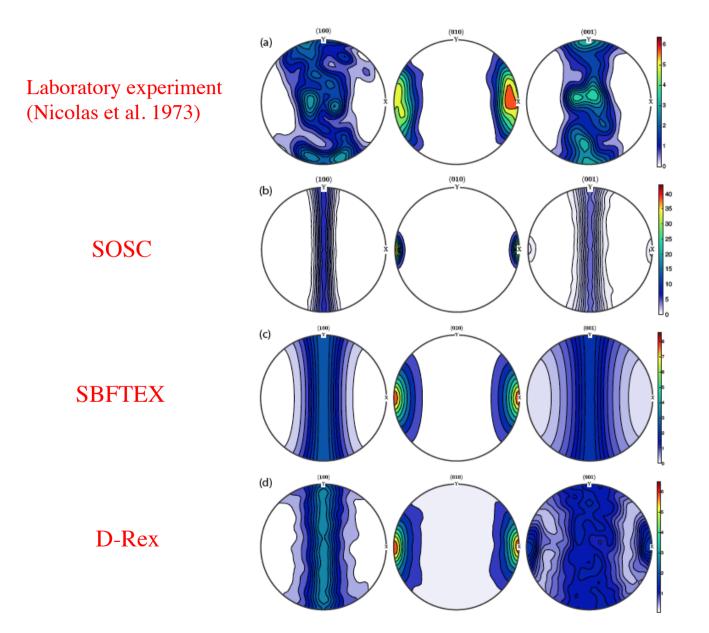
$$\begin{aligned} \mathcal{F}(\mathbf{g}) &= 1 &+ \sum_{s=1}^{3} C_{s}(p_{12}, p_{23}, r_{12}, r_{23}) \left[f(\mathbf{M}_{s}\mathbf{g}, r_{12}, r_{23}) - 1 \right] \\ \text{ODF} & \text{isotropic} \\ \text{part} & \text{precalculated} \\ \text{expansion} \\ \text{coefficients} & \text{SBF for slip system } s \end{aligned}$$

$$\begin{aligned} p_{ij} &= \ln \frac{\tau_{i}}{\tau_{j}} \quad (\text{relative strengths of slip systems}) \\ r_{ij} &= \ln \frac{c_{i}}{c_{j}} \quad (\text{axial ratios of finite strain ellipsoid}) \end{aligned}$$

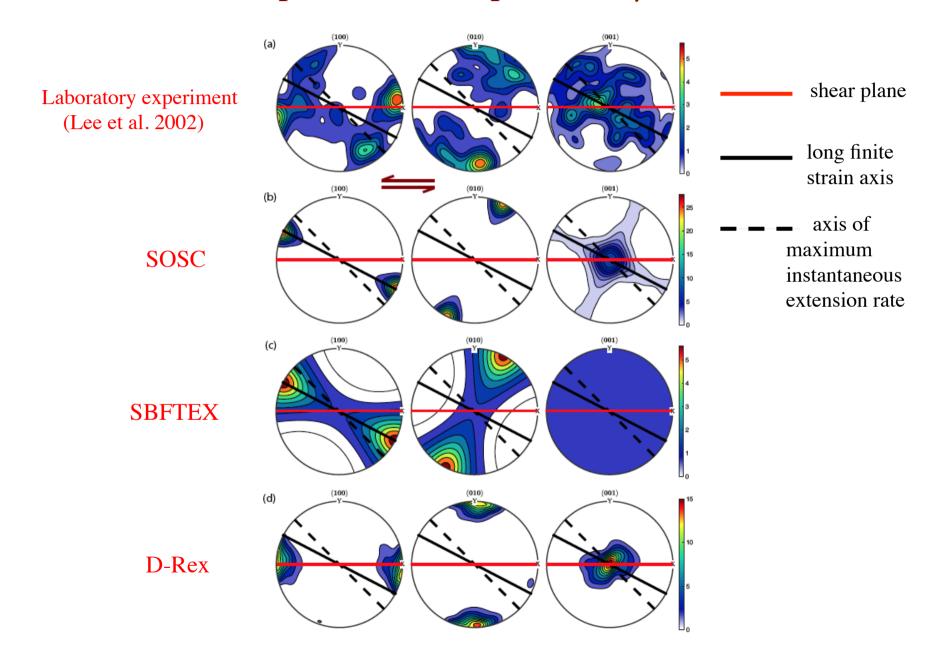
$$\begin{aligned} \mathbf{M}_{s} &= \text{ rotation matrix for slip system } s \end{aligned}$$

Given the finite strain and the slip system strengths, the full ODF can be calculated

SBFTEX prediction: Uniaxial compression (58% shortening)



SBFTEX prediction: Simple shear ($\gamma = 140\%$)



Summary and Perspectives

Advantages of the structured basis function approach:

- ➡ Representation of CPO is
 - smooth (uses continuous functions)
 - economical (typically 3 coefficients)
- Expression for crystallographic spin agrees exactly with the SOSC model
- ► Calculations are ~ 10^7 times faster than SOSC
- ► Can be applied to both upper- and lower-mantle phases

Future work:

- ☞ extension to two-phase aggregates
- ▶ parameterization of recrystallization
- ➡ user-friendly open-source implementation