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Aim
Context: To predict seismic anisotropy from geodynamical models,

we need to be able to calculate how crystal preferred orientation
(CPO) evolves during progressive deformation

Difficulty:  Self-consistent models (VPSC, SOSC) are too
computationally expensive to include in 3-D
convection codes

This work:

Design faster algorithms based on:

@® an analytical expression for
crystallographic spin = model ANPAR

® an economical analytical representation
of CPO in terms of « structured basis
functions » m model SBFTEX




Mechanism of crystallographic rotation
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Analytical expression for crystallographic spin

Model: aggregate of crystals with
one active slip system, deformed
by triaxial straining

(principal strain rates €1, €2, €3)
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Amplitude A:

= 5 if global strain rate compatibility
1s enforced

= 1 if not enforced

= intermediate if several slip systems
are active



Analytical expression for the spin: Validation against SOSC

Test case: uniaxial compression (shortening rate &,)

Quantity shown: spin v for slip system (010)[100] of olivine
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The analytical model reproduces exactly the orientation-dependence
of crystal spin predicted by the SOSC model




ANPAR vs. SOSC: Uniaxial compression (45 % shortening)
of an olivine polycrystal
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ANPAR vs. SOSC: Corner Flow Model

long finite strain axis
shear plane
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Analytical description of CPO

Idea : represent CPO using « structured basis functions » that:
@ satisfy automatically the symmetry of the imposed deformation
@ can represent arbitrarily sharp textures

@ arc analytical solutions of the evolution equation for the ODF:

of .
5; TV (gf)=0
Number of SBFs required

= Number of active slip systems




Structured basis functions

General form (for time-independent spin amplitude A):

f — f(¢,0,’(p, A, 61/62762/63)

Eulerian  spin
angles amplitude

finite strains

Exact expression:
f = fo[cosh AT" — sin 2(¢) — x) sinh AI'|*
I' = [’I‘%QFZ + (7‘12G + 7‘23H)2] 1/2
{cos2x,sin2x} = T {rioF,r1oG + roz H} ri; = In(c;/c; )
F = —sin2¢cosf H = —sin?6

G = sin? ¢ cos? O — cos? ¢

Interpretation:

SBF = virtual CPO produced by the action of a single slip system



Structured basis function vs. strain (uniaxial compression)

30% shortening 60% shortening

- SBF automatically gets sharper as strain increases




SBF expansion of the orientation distribution function

3

1 T Z Cs(p12, P23, T12,723) [f (Mg, 712, 723) — 1
. . 821
isotropic precalcu.lated anisotropic part of
part cxpansion SBF for slip system s
coefficients

T . .
pi; = In — (relative strengths of slip systems)

7j
C .

ri; = In — (axial ratios of finite strain ellipsoid)

Cj

M, = rotation matrix for slip system s

Given the finite strain and the slip system strengths,
the full ODF can be calculated




SBFTEX prediction: Uniaxial compression (58 % shortening)

Laboratory experiment
(Nicolas et al. 1973)
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SBFTEX prediction: Simple shear (y=140%)
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Summary and Perspectives

Advantages of the structured basis function approach:

m Representation of CPO is

€ smooth (uses continuous functions)

€ cconomical (typically 3 coefficients)

m Expression for crystallographic spin agrees exactly with the SOSC model
w Calculations are ~ 107 times faster than SOSC

m Can be applied to both upper- and lower-mantle phases

Future work:

- extension to two-phase aggregates

= parameterization of recrystallization

m user-friendly open-source implementation









