
Which climate models capture the observed internal variability and forced response?
Laura Suarez-Gutierrez*, Nicola Maher*, and Sebastian Milinski*

 * Max Planck Institute for Meteorology, Hamburg, Germany

Large ensembles provide better yet simpler model evaluation
frameworks.

They allow us to reassess whether observations occur within the
better-sampled range of simulated climate states; without the
need to make assumptions about the observed variability and
forced response. 

Do you have any comments or
questions?

Would you like more details?
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1. Introduction
We apply a novel methodological framework utilizing the power of
single model initial condition large ensembles (SMILEs) for evaluating
how fully-coupled climate models capture the observed internal
variability and the observed response in the climate system to natural
and anthropogenic external forcings. As a test case for this framework
we use surface temperatures. 

Our framework1,2,3  is based on a simple approach: assessing whether
observations are well distributed across the whole ensemble spread
of simulated states, and whether they generally stay within this
ensemble spread. 

This method  relies on the robust characterization of internal variability in
SMILEs, that provides well-defned evolving mean climate and
probability distributions of deviations around this mean state caused
by internal variability. This allows us to distinguish what causes
discrepancies between models and observations: an incorrect simulated
forced response, or rather an over or underestimated simulated
internal variability.

With this framework we are not constrained to mean state comparisons,
detrended quantities, assumptions for isolating the observed forced
response, or to evaluating internal variability by using standard
deviations as a proxy. In contrast, we can directly quantify whether the
whole distribution, including its tails, agrees well with what is
observed. 

3. Global mean temperature time series and rank histogram analysis

Figure 1: Time series and rank histograms of annual GMST anomalies by each SMILE (colored) and  HadCRUT4(3) observed
anomalies (black circles) for the period.  Colored lines represent ensemble maxima and minima,  shading represents the ensemble
spread within the central 75th percentile bounds (12.5th to 87.5th percentiles). Rank histograms represent the frequency of each rank
of HadCRUT4 GMST observations shown as a member of each SMILE. Crosses mark the frequency of minimum (0) and maximum
(number of members) ranks, while lines illustrate the histogram's slope, as the mean rank frequency over a centered 10-rank window.
All anomalies are relative to the period of 1961-1990.

2. Data
SMILEs consist of many simulations of exactly the same climate model
run under the same external forcings, but starting from different initial
conditions.  This design ensures that the simulations differ only due to
internal variability, and together offer a sampling of the climate system
in different favors of internal variability and its response to external
forcings that is robust and precise.

We use SMILE surface temperature simulations from ten CMIP5 and
CMIP6 models (Table 1) and HadCRUT4 observations4. 

4. Where do climate models perform well? 

References

SMILE Members Years  Forcing ECS
CanESM25 50 1950-2018 Hist. + RCP8.5 3.7 K
CanESM5*6 50 1850-2014 Hist. 5.7 K
CESM-LE7 40 1920-2018 Hist. + RCP8.5 4.1 K
CSIRO8 30 1850-2018 Hist. + RCP8.5 4.1 K
GFDL-CM39 20 1920-2018 Hist. + RCP8.5 4.0 K
GFDL-ESM2M10 30 1950-2018 Hist. + RCP8.5 2.4 K
IPSL-CM5A11 30 1941-2018 Hist. + RCP8.5 4.1 K
IPSL-CM6A* 31 1850-2014 Hist. 4.5 K
MIROC6*12 50 1850-2018 Hist. + SSP2-

4.5
2.6 K

MPI-GE2 100 1850-2018 Hist. + RCP4.5 2.8 K

Table 1: Details of SMILE experiments  used including name, number of members,
simulated years used, forcing conditions, and available Equilibrium Climate Sensitivity
(ECS). CMIP6 models are marked with a star. All experiments include historical forcing
(Hist.) of CMIP5 until 2005, or CMIP6 until 2014 and are extended using one future
forcing scenario when available.

We use time series and rank* histograms to
assess whether global mean surface
temperature (GMST) observations occur
within the ensemble spread with uniform
frequency  (Fig. 1). 

*Rank = the place that the observations
would take in a list of members ordered by
ascending GMST values for each year. Is 0
when observed GMST is lower than all
GMSTs simulated for that year; and N when
it is higher than all simulated GMST, with N
the number of members.

The shape of the rank histogram illustrates
whether the observed variability and forced
response are  adequately simulated:

● Flat histograms indicate that both the
observed variability and forced response
are well captured → CESM-LE, 
GFDL-ESM2M, MPI-GE 

● High rank 0 frequencies indicate
overestimated forced warming if they occur
clustered in time → CanESM2, CanESM5,
GFDL-CM3, IPSL-CM5A

● Sloped histograms may indicate both a bias
in variability affecting the shape or skewness
of the distribution, or a bias in the forced
response → CSIRO, IPSL-CM6A, MIROC6 

● Concave or convex histograms  indicate that
internal variability is respectively under or
overestimated → not found

Figure 2: Evaluation of variability and forced response in surface temperature  annual anomalies
simulated by selected SMILEs against HadCRUT4 observations. Red shading marks regions where
observations are larger than the ensemble maximum, while blue shading marks where observations are
smaller than the ensemble minimum for more than 10% to 20% of the time. Gray hatching marks regions
where observations cluster within the central 75th percentile bounds of the ensembles (12.5th to 87.5th
percentiles). Dotted areas represent regions where observations  are available for less than 10 years.
Simulated data are regridded to match the observational grid (~5°).

→ Internal variability in GMST is captured well by most models, but some overestimate forced warming.

8. Jeffrey et al., 2013. Australia’s CMIP5 submission using the CSIRO-Mk 3.6 model. AMOJ.
9. Sun et al., 2018. Evolution of the Global Coupled Climate Response to Arctic Sea Ice Loss during 1990–2090 and ts Contribution to Climate

Change. J of Climate. 
10. Rodgers et al., 2015. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosci.
11. Frankignoul et al., 2017. Estimation of the SST Response to Anthropogenic and External Forcing and Its Impact on the Atlantic Multidecadal

Oscillation and the Pacifc Decadal Oscillation. J of Climate.
12. Tatebe et al, 2019. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci
Model Dev.

1. Suarez-Gutierrez et al., 2018. Internal variability in European summer temperatures at 1.5C and 2C of global warming. ERL.
2. Maher et al., 2019. The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. JAMES.
3. Hamill, 2001. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Weath. Rev. 
4. Morice et al., 2012. Quantifying uncertainties in global and regional temperature change using an ensemble of observational

estimates: The hadCRUT4 data set. JGR:Atmos.
5. Kirchmeier-Young et al., 2017.  Attribution of Extreme Events in Arctic Sea Ice Extent. J of Climate.
6. Swart et al., 2019. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev.
7. Kay et al. 2015. The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying

Climate Change in the Presence of Internal Climate Variability. BAMS

Using this framework we can identify regions where:

● observed internal variability is overestimated (gray) or underestimated (blue and red) 
 

● observed forced response is not adequately captured due to overestimated (only
blue) or underestimated (only red) simulated warming, or to forced response bias
changing signs over different periods (blue and red) 

We fnd that, for most models, observations occur outside the ensemble limits (blue
or/and red) more frequently than they tend to cluster in the central ensemble bounds
(gray). This means that these models fail to capture the observed forced response
and/or underestimate the observed variability in surface temperatures more frequently
than they tend to overestimate the observed internal variability (Fig. 2). 

The areas over the North Atlantic, Tropical Eastern Pacifc, and northern hemisphere
land regions are where most models, a maximum of nine, adequately simulate
observed surface temperatures. While over the Southern Ocean, none of the models
considered offers an adequate representation.

→ CESM-LE, GFDL-ESM2M and MPI-GE offer the best representation of the
observed internal variability and forced response in surface temperatures.
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