Which climate models capture the observed internal variability and forced response?
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We apply a novel methodological framework utilizing the power of
single model initial condition large ensembles (SMILEs) for evaluating
how fully-coupled climate models capture the observed internal

variability and the observed response in the climate system to natural fra mewo rks.
and anthropogenic external forcings. As a test case for this framework
we use surface temperatures.

Large ensembles prOVide better yet Simpler mOdeI evaluation Using this framework we can identify regions where:

* observed internal variability is overestimated (gray) or underestimated (blue and red)

* observed forced response is not adequately captured due to overestimated (only
blue) or underestimated (only red) simulated warming, or to forced response bias

123 - . . changing signs over different periods (blue and red)
Our framework™“* is based on a simple approach: assessing whether

observations are well distributed across the whole ensemble spread

of simulated states, and whether they generally stay within this better_sampled range Of SimUIated Climate States; WithOUt the

ensemble spread.

This method relies on the robust characterization of internal variability in need to make assumptions abOUt the Observed variability and

SMILEs, that provides well-defined evolving mean climate and

probability distributions of deviations around this mean state caused fo rced res o nse
by internal variability. This allows us to distinguish what causes p ® The areas over the North Atlantic, Tropical Eastern Pacific, and northern hemisphere
discrepancies between models and observations: an incorrect simulated land regions are where most models, a maximum of nine, adequately simulate

forced response, or rather an over or underestimated simulated observed surface temperatures. While over the Southern Ocean, none of the models
internal variability. considered offers an adequate representation.

They allow us to reassess whether observations occur within the

We find that, for most models, observations occur outside the ensemble limits (blue
or/and red) more frequently than they tend to cluster in the central ensemble bounds
(gray). This means that these models fail to capture the observed forced response
and/or underestimate the observed variability in surface temperatures more frequently
than they tend to overestimate the observed internal variability (Fig. 2).

With this framework we are not constrained to mean state comparisons,
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' ' ' Figure 1: Time series and rank histograms of annual GMST anomalies by each SMILE (colored) and HadCRUT4(3) observed « Concave or convex histograms indicate that simulated by selected SMILEs against HadCRUT4 observations. Red shading marks regions where
Table 1: Details of SMILE experiments used including name, number of members, anomalies (black circles) for the period. Colored lines represent ensemble maxima and minima, shading represents the ensemble it | Sbility i fivel d observations are larger than the ensemble maximum, while blue shading marks where observations are
T within th 74t o bounds (12.5th to 87 5th oq). Rank h o f ook rank internal variability is respectively under or b ] A ! , ,
simulated years used, forcing conditions, and available Equilibrium Climate Sensitivity spread within the central /5t percentile bounds (12.5th to 87.5th percentiles). Rank histograms represent the frequency ot each ran overestimated — not found smaller than the ensemble minimum for more than 10% to 20% of the time. Gray hatching marks regions
(ECS). CMIP6 models are marked with a star. All experiments include historical forcing of HadCRUT4 GMST observatlo.ns §how.n as d membgr of eaclh SMILE. Crosses mark the frequency of minimum (0) and maximum where observations cluster within the central 75th percentile bounds of the ensembles (12.5th to 87.5th
(Hist.) of CMIP5 until 2005, or CMIP6 until 2014 and are extended using one future (number of members) ranks, while lines illustrate the histogram's slope, as the mean rank frequency over a centered 10-rank window. percentiles). Dotted areas represent regions where observations are available for less than 10 years.
forcing scenario when available. All anomalies are relative to the period of 1961-1990. Simulated data are regridded to match the observational grid (~5°).
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