

Converting InSAR- and GNSS-derived strain rate maps into earthquake likelihood models for Anatolia

Chris Rollins^{1,2} - Tim Wright^{1,2} - Jonathan Weiss^{2,3} - Sylvain Michel⁴ - Andy Hooper^{1,2} - Richard Walters^{2,5} - Milan Lazecky^{1,2} - Yu Morishita^{1,2}

¹University of Leeds - ²COMET - ³Universität Potsdam - ⁴ENS Paris - ⁵Durham University

TS5.5: Active Tectonics and Geodynamics of Eastern Mediterranean - EGU General Assembly - May 7, 2020

LiCSAR coverage of Sentinel-I InSAR data for the Alpine-Himalayan Belt

LiCSAR InSAR- and GPS-based **strain rate map** for Anatolia [Jonathan Weiss et al.; see presentation D1225 in this session]

Given a strain map, how can we use it to estimate seismic hazard?

Method: strain rate $\rightarrow \Sigma$ (moment buildup rate) $\stackrel{!}{=} \Sigma$ (moment release rate in EQs)

- Moment buildup rate = strain rate \cdot volume \cdot elastic stiffness [e.g., Kostrov, 1974]
 - Locked depth range: assume 16 ± 2 km (average North Anatolian Fault locking depth from Hussain et al. 2018)
 - This is assuming that surface strain rates hold down to 16 km depth
 - Shear modulus μ : assume 32 GPa (increases with depth, but may decrease near faults due to damage?)
- Total moment buildup rate in Anatolia: $\sim 2.4 \cdot 10^{19} \, \text{Nm/yr}$
- How might large, moderate and small earthquakes combine to collectively release seismic moment at this rate?

For clues, let's turn the instrumental earthquake catalogue in Anatolia

Kadirioğlu et al. [2018] catalogue (≤20 km depth) and ISC-GEM catalogue

Let's *make* a moment-balancing long-term earthquake model, and evaluate the following:

- If you ran this model for 115 yr, would the seismicity from it look anything like the 1900-2015 catalog?
 - In what way? Perhaps in the total magnitude-frequency distribution
- More direct: what are the odds that the exact 1900-2015 magnitude-frequency distribution would drop out of the model?

 $P(\text{each model}) = P(\text{catalog} \mid \text{model}) \cdot P(\text{moment balance}) \cdot P(\text{that buildup rate})$ = $P(\text{catalog} \mid \text{model}) \cdot 1 \text{ (by definition)} \cdot PDF(\text{moment buildup rate})$

Upcoming work

- Incorporate earthquake interactions and sequences into probabilities
- Move away from drawing a **giant regional box** and enforcing moment balance etc. inside that
 - May be able to do this for individual faults or high-strain regions
- Expand to the rest of the Alpine-Himalayan Belt

