#### Mid-crustal magma reservoirs at Cleveland and Akutan Volcano imaged through novel receiver function analyses



Helen A. Janiszewski | hajanisz@hawaii.edu Lara S. Wagner, Diana C. Roman EGU Fall Meeting

SCIENCES



What is the crustal magmatic architecture beneath individual volcanoes?





# Cleveland Volcano



We do see local variation in the receiver function data, but no distinct additional arrival. What structures causes this?

Janiszewski et al., submitted





# Complex Magmatic Geometries



Under the main edifice, receiver functions point to a relatively thick LVZ indicating a region of mush/melt in the mid-crust.

This doesn't explain all observations beneath Cleveland volcano.

Suggests a more complex 3-D geometry of velocity anomalies potential for more detailed analysis.

### Akutan Volcano

Mid-crustal magmatic region (7 - 11 km), widespread under island.





Janiszewski et al., 2013



# Main Takeaways

Receiver function techniques are useful for determining basic mid- to deep-crustal magmatic architecture with only a few seismic instruments (monitoring scale).

seismicity.

sharp sill vs. gradual.

Useful for characterizing a difficult to constrain piece of the volcanic system with few instruments. Complements typical volcanology techniques.

Potentially useful in planning future dense deployments around volcanoes.

More information: Janiszewski et al., 2020, Scientific Reports

- Unlike at Akutan, slow velocities wider depth range and likely extend much deeper than
- Evidence that we can discriminate between different "types" of magmatic architecture -