

- Historical (1700–2012) Global Multi-model Estimates of the Fire
- **Emissions from the Fire Modeling Intercomparison Project (FireMIP)**

### **Fang Li** Institute of Atmospheric Physics, Chinese Academy of Sciences Email: <u>lifang@mail.iap.ac.cn</u>

#### With FireMIP

Li, F., Val Martin, M., Andreae, M. O., Arneth, A., Hantson, S., Kaiser, J. W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., van der Werf, G. R., Wiedinmyer, C., and Rabin, S. S.: Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, 2019. https://www.atmos-chem-phys.net/19/12545/2019/

# Background



## **Importance of fire emissions**

- Key component of land C budget
- > Major source of greenhouse gases
- Largest contributor of primary carbonaceous aerosols globally
- Affect climate, C/nutrient cycles, Air quality & human health

- Regional/global fire emissions
- > No observations
- Estimates methods:

Satellite-based (e.g. GFED) global but only present-day

Fire proxy records (e.g. GCD): long-term but limited spatial extent

DGVM with fire modeling (e.g. FireMIP): local to global scales for past, present, and future

- Earlier studies: one single time series / based on one DGVM
- > quantify uncertainty in historical fire emis. (NO)
- understand inter-model discrepancy in historical reconstruction and future projections (NO)

## **Our study:**

- provides a new dataset of multi-model global gridded fire emis. (9 DGVMs, 1700-2012, C and 33 aerosols & trace gases)
- comprehensively evaluates the model-based estimates
- > analyzes simulated long-term changes, inter-model diff., & their drivers

# Methods and data

## • FireMIP Models

#### > 9 DGVMs

# Inc. all fire schemes used in CMIP6/IPCC AR6

# Also inc. GlobFIRM (most commonly used in CMIP5/IPCC AR5)

**median of six of them determines historical changes over most regions of the world in CMIP6 fire emis.** (as input data of CMIP6 CSMs/ESMs)

P: prescribed M: modeled

| DGVMs                | tem. res. | spatial res.               | period | natural  | fire scheme ref.        | DGVM ref.               |
|----------------------|-----------|----------------------------|--------|----------|-------------------------|-------------------------|
|                      | of model  | of model                   |        | veg.     |                         |                         |
|                      | outputs   | outputs                    |        | distrib. |                         |                         |
| CLM4.5 but CLM5 fire | monthly   | ${\sim}1.9^{\circ}$ (lat)  | 1700-  | Р        | Li et al. (2012, 2013)  | Oleson et al. (2013)    |
| model (CLM4.5)       |           | $\times 2.5^{\circ}$ (lon) | 2012   |          | Li and Lawrence (2017)  |                         |
| CTEM                 | monthly   | 2.8125°                    | 1861-  | Р        | Arora and Boer (2005)   | Melton and Arora        |
|                      |           |                            | 2012   |          | Melton and Arora (2016) | (2016)                  |
| JSBACH-SPITFIRE      | monthly   | 1.875°                     | 1700-  | Р        | Lasslop et al. (2014)   | Brovkin et al. (2013)   |
| (JSBACH)             |           |                            | 2012   |          | Thonicke et al. (2010)  |                         |
| JULES-INFERNO        | monthly   | ${\sim}1.2^{\circ}$ (lat)  | 1700-  | М        | Mangeon et al. (2016)   | Best et al. (2011)      |
| (JULES)              |           | $\times 1.9^{\circ}(lon)$  | 2012   |          |                         | Clark et al. (2011)     |
| LPJ-GUESS-GlobFIRM   | annual    | 0.5°                       | 1700-  | М        | Thonicke et al. (2001)  | Smith et al. (2014)     |
| (LGG)                |           |                            | 2012   |          |                         | Lindeskog et al. (2013) |
| LPJ-GUESS-SPITFIRE   | monthly   | 0.5°                       | 1700-  | М        | Lehsten et al. (2009)   | Smith et al. (2001)     |
| (LGS)                |           |                            | 2012   |          | Rabin et al. (2017)     | Ahlstrom et al. (2012)  |
| LPJ-GUESS-SIMFIRE    | monthly   | 0.5°                       | 1700-  | М        | Knorr et al. (2016)     | Smith et al. (2014)     |
| -BLAZE (LGSB)        |           |                            | 2012   |          |                         | Lindeskog et al. (2013) |
|                      |           |                            |        |          |                         | Nieradzik et al. (2017) |
| MC2                  | annual    | 0.5°                       | 1901-  | М        | Bachelet et al. (2015)  | Bachelet et al. (2015)  |
|                      |           |                            | 2008   |          | Sheehan et al. (2015)   | Sheehan et al. (2015)   |
| ORCHIDEE-SPITFIRE    | monthly   | 0.5°                       | 1700-  | Р        | Yue et al. (2014, 2015) | Krinner et al. (2005)   |
| (ORCHIDEE)           |           |                            | 2012   |          | Thonicke et al. (2010)  |                         |

| Global fire schemes                                    | DGVMs    | crop     | tropical    | human                | human fire               | peat             | pasture    | combust.                    |
|--------------------------------------------------------|----------|----------|-------------|----------------------|--------------------------|------------------|------------|-----------------------------|
| in FireMIP DGVMs                                       |          | fire     | human       | ignition             | suppression              | fire             |            | complete. range             |
|                                                        |          |          | defor. fire |                      |                          |                  |            | of woody tissue             |
| Fire C emissions                                       | CLM4.5   | yes      | yes         | increase             | occurrence &             | yes <sup>e</sup> | as natural | 27-35% (stem)               |
| = burned area ( <b>BA</b> ) $\times$ fuel load         |          |          |             | with PD <sup>a</sup> | spread area <sup>b</sup> |                  | grassland  | 40% (CWD <sup>f</sup> )     |
| $\times$ combustion completeness (CC)                  | CTEM     | no       | no          | increase             | occurrence &             | no               | as natural | 6% (stem)                   |
|                                                        |          |          |             | with PD              | duration <sup>c</sup>    |                  | grassland  | 15-18% (CWD)                |
| <sup>a</sup> PD: population density                    | JSBACH   | as grass | no          | increase             | occurrence &             | no               | high fuel  | 0-45%                       |
| <sup>b</sup> fire suppression increases with PD and    |          | fire     |             | with PD              | duration <sup>c</sup>    |                  | bulk den.  |                             |
| GDP, different between tree PFTs and                   | JULES    | no       | no          | increase             | occurrence <sup>c</sup>  | no               | as natural | 0-40%                       |
| grass/shrub PFTs                                       |          |          |             | with PD              |                          |                  | grassland  |                             |
| <sup>c</sup> fire suppression increases with PD        | LGG      | no       | no          | no                   | no                       | no               | harvest    | 70–90%                      |
| <sup>d</sup> Assume no fire in grid cell when pre-     | LGS      | no       | no          | increase             | occurrence <sup>c</sup>  | no               | as natural | 0–98% (100h <sup>g</sup> )  |
| calculated rate of spread, fireline intensity,         |          |          |             | with PD              |                          |                  | grassland  | 0–80% (1000h <sup>g</sup> ) |
| than thresholds                                        | LGSB     | no       | no          | increase             | burned area <sup>c</sup> | no               | harvest    | 0-50%                       |
| <sup>e</sup> CLM4.5 outputs in FireMIP include         |          |          |             | with PD              |                          |                  |            |                             |
| biomass and litter burning due to peat fires,          | MC2      | no       | no          | no                   | occurrence <sup>d</sup>  | no               | as natural | 0-87% (100h)                |
| but don't include burning of soil organic              |          |          |             |                      |                          |                  | grassland  | 0-43% (1000h)               |
| matter                                                 | ORCHIDEE | no       | no          | increase             | occurrence <sup>c</sup>  | no               | as natural | 0–73% (100h)                |
| <sup>f</sup> Coarse Woody Debris                       |          |          |             | with PD              |                          |                  | grassland  | 0–41% (1000h)               |
| <sup>g</sup> 100-hour fuels and 1000-hour fuel classes |          | •        | •           | •                    | •                        |                  |            |                             |

## FireMIP experimental protocol and input datasets



#### **5 sensitive runs:**

- constant climate
- constant atmospheric [CO<sub>2</sub>]
- constant land cover
- constant population density
- constant lightning frequency

- Estimate fire trace gas & aerosol emis.
- Fire emis. of trace gas and aerosol species *i* and the PFT *j*

 $E_{i,j} = EF_{i,j} \times CE_j/[C]$ 

*EF*: emission factors (Andreae, 2019) *CE*: fire carbon emis. output from FireMIP DGVMs  $[C]=0.5 \times 10^3$  g C (kg DM)<sup>-1</sup> unit conversion factor

| No. | Species                                        | grassland | tropical | temperate | boreal | cropland |
|-----|------------------------------------------------|-----------|----------|-----------|--------|----------|
|     |                                                | /savanna  | forest   | forest    | forest |          |
| 1   | CO <sub>2</sub>                                | 1647      | 1613     | 1566      | 1549   | 1421     |
| 2   | СО                                             | 70        | 108      | 112       | 124    | 78       |
| 3   | $CH_4$                                         | 2.5       | 6.3      | 5.8       | 5.1    | 5.9      |
| 4   | NMHC                                           | 5.5       | 7.1      | 14.6      | 5.3    | 5.8      |
| 5   | H2                                             | 0.97      | 3.11     | 2.09      | 1.66   | 2.65     |
| 6   | NO <sub>x</sub>                                | 2.58      | 2.55     | 2.90      | 1.69   | 2.67     |
| 7   | N <sub>2</sub> O FF Tab                        | 0.18      | 0.20     | 0.25      | 0.25   | 0.09     |
| 8   |                                                | 7.5       | 8.3      | 18.1      | 20.2   | 8.5      |
| 9   | TPM                                            | 8.5       | 10.9     | 18.1      | 15.3   | 11.3     |
| 10  | TPC                                            | 3.4       | 6.0      | 8.4       | 10.6   | 5.5      |
| 11  | OC                                             | 3.1       | 4.5      | 8.9       | 10.1   | 5.0      |
| 12  | BC                                             | 0.51      | 0.49     | 0.66      | 0.50   | 0.43     |
| 13  | SO <sub>2</sub>                                | 0.51      | 0.78     | 0.75      | 0.75   | 0.81     |
| 14  | C <sub>2</sub> H <sub>6</sub> (ethane)         | 0.42      | 0.94     | 0.71      | 0.90   | 0.76     |
| 15  | CH <sub>3</sub> OH (methanol)                  | 1.48      | 3.15     | 2.13      | 1.53   | 2.63     |
| 16  | C <sub>3</sub> H <sub>8</sub> (propane)        | 0.14      | 0.53     | 0.29      | 0.28   | 0.20     |
| 17  | C <sub>2</sub> H <sub>2</sub> (acetylene)      | 0.34      | 0.43     | 0.35      | 0.27   | 0.32     |
| 18  | C <sub>2</sub> H <sub>4</sub> (ethylene)       | 1.01      | 1.11     | 1.22      | 1.49   | 1.14     |
| 19  | C <sub>3</sub> H <sub>6</sub> (propylene)      | 0.49      | 0.86     | 0.67      | 0.66   | 0.48     |
| 20  | C <sub>5</sub> H <sub>8</sub> (isoprene)       | 0.12      | 0.22     | 0.19      | 0.07   | 0.18     |
| 21  | C <sub>10</sub> H <sub>16</sub> (terpenes)     | 0.10      | 0.15     | 1.07      | 1.53   | 0.03     |
| 22  | C <sub>7</sub> H <sub>8</sub> (toluene)        | 0.20      | 0.23     | 0.43      | 0.32   | 0.18     |
| 23  | C <sub>6</sub> H <sub>6</sub> (benzene)        | 0.34      | 0.38     | 0.46      | 0.52   | 0.31     |
| 24  | C <sub>8</sub> H <sub>10</sub> (xylene)        | 0.09      | 0.09     | 0.17      | 0.10   | 0.09     |
| 25  | CH <sub>2</sub> O (formaldehyde)               | 1.33      | 2.40     | 2.22      | 1.76   | 1.80     |
| 26  | C <sub>2</sub> H <sub>4</sub> O (acetaldehyde) | 0.86      | 2.26     | 1.20      | 0.78   | 1.82     |
| 27  | C <sub>3</sub> H <sub>6</sub> O (acetone)      | 0.47      | 0.63     | 0.70      | 0.61   | 0.61     |
| 28  | $\rm C_3H_6O_2(hydroxyacetone)$                | 0.52      | 1.13     | 0.85      | 1.48   | 1.74     |
| 29  | C <sub>6</sub> H <sub>5</sub> OH (Phenol)      | 0.37      | 0.23     | 0.33      | 2.96   | 0.50     |
| 30  | NH3 (ammonia)                                  | 0.91      | 1.45     | 1.00      | 2.82   | 1.04     |
| 31  | HCN (hydrogen cyanide)                         | 0.42      | 0.38     | 0.62      | 0.81   | 0.43     |
| 32  | MEK/2-butanone                                 | 0.13      | 0.50     | 0.23      | 0.15   | 0.60     |
| 33  | CH <sub>3</sub> CN (acetonitrile)              | 0.17      | 0.51     | 0.23      | 0.30   | 0.25     |

#### > Associate DGVMs' plant functional types (PFTs) to EF Table's land cover types

T: tree; S: shrub; W: woodland; F: forest; G: grass; P: pasture; Sava: Savanna; N: needleleaf; E: evergreen; B: broadleaf; D: deciduous; R: raingreen; SI: shadedintolerant; SG: summer-green; M: mixed; I: irrigated; RF: rainfed; C/W: cool or warm; S/W: spring or winter, Tro: Tropical; Tem: Temperate; Bor: Boreal; Sub-Tro: subtropical; Ex-Tro: Extratropical; A: Arctic <sup>a</sup> split tree PFTs into tropical, temperate, and boreal groups following rules of Nemani and Running (1996) that also used to make CLM land surface data by Peter et al. (2007; 2012) since CLM version 3; <sup>b</sup>LGG and LGBS did not outputs PFT-level fire carbon emissions, so land cover classified using its dominant vegetation type y

| <sup>c</sup> MC2 classifies tropical savannas and tropical |
|------------------------------------------------------------|
| deciduous woodland regions, and the latter mainly          |
| represents tropical deciduous forests                      |

| LCT                          | Grassland      | Tropical                                | Temperate                 | Boreal                    | Cropland      |
|------------------------------|----------------|-----------------------------------------|---------------------------|---------------------------|---------------|
| Models                       | /Savannas      | Forest                                  | Forest                    | Forest                    |               |
| CLM4.5                       | A C3/C3/C4 G   | Tro BE T                                | Tem NE T                  | Bor NE T                  | Crop          |
|                              | Bor BD S       | Tro BD T                                | Tem BE T                  | Bor ND T                  |               |
|                              | Tem BE/BD S    |                                         | Tem BD T                  | Bor BD T                  |               |
| CTEM                         | C3/C4 G        | $\mathrm{BE}\; \mathrm{T}^{\mathrm{a}}$ | NE/BE T <sup>a</sup>      | NET <sup>a</sup> , ND T   | C3/C4 Crop    |
|                              |                | Other BD T <sup>a</sup>                 | Other BD T <sup>a</sup>   | Cold BD T                 |               |
| JSBACH                       | C3/C4 G/P      | Tro E/D T                               | Ex-Tro E/D T <sup>a</sup> | Ex-Tro E/D T <sup>a</sup> | Crop          |
| JULES                        | C3/C4 G        | Tro BE T                                | Tem BE T                  | BD/NE T <sup>a</sup>      |               |
|                              | E/D S          | BD T <sup>a</sup>                       | BD/NE T <sup>a</sup>      | NDT                       |               |
| $LGG^{b}$                    | C3/C4 G        | Tro BE/BR T                             | Tem NSG/BSG/BE T          | Bor NE T                  | R/I S/W Wheat |
|                              | C3/C4 G in P   | Tro SI BE T                             | Tem SI SG B T             | Bor SI NE T               | R/I Maize     |
| LGS                          | C3/C4 G        | Tro BE/BR T                             | Tem SI/&SG B T            | Bor NE T                  |               |
|                              |                | Tro SI BE T                             | Tem B/N E T               | Bor SI/&SG NE/N T         |               |
| $\mathrm{LGSB}^{\mathrm{b}}$ | C3/C4 G        | Tro BE/BR T                             | Tem NSG/BSG/ BE T         | Bor NE T                  | R/I S/W Wheat |
|                              | C3/C4 G in P   | Tro SI BE T                             | Tem SI SG B T             | Bor SI NE T               | R/I Maize     |
| MC2                          | Tem C3 G/S     | Tro BE T                                | Maritime NE F             | Bor NE F                  |               |
|                              | Sub-Tro C4 G/S | Tro D W <sup>c</sup>                    | Sub-Tro NE/BD/BE/M F      | Subalpine F               |               |
|                              | Tro S/G/Sava   |                                         | Tem NE/BD F               | Cool N F                  |               |
|                              | Bor M W        |                                         | Tem C/W M F               |                           |               |
|                              | Tem/Sub-Tro    |                                         |                           |                           |               |
|                              | NE/B/M W       |                                         |                           |                           |               |
|                              | Tundra         |                                         |                           |                           |               |
|                              | Taiga-Tundra   |                                         |                           |                           |               |
| ORCHIDEE                     | C3/C4 G        | Tro B E/R T                             | Tem N/B E T               | Bor N E/D T               | C3/C4 Crop    |
|                              |                |                                         | Tem BD T                  | Bor BT T                  |               |

| • Benchmarks        |   | Name    | Method                          | Fire data sources       | Peat    | Start | reference                    |
|---------------------|---|---------|---------------------------------|-------------------------|---------|-------|------------------------------|
|                     |   |         |                                 |                         | burning | year  |                              |
|                     | Г | GFED4   | Bottom-up: fuel consumption,    | MODIS, VIRS/ATSR        | Y       | 1997  | van der Werf et al. (2017)   |
|                     |   | GFED4s  | burned area &active fire counts |                         | Y       | 1997  |                              |
|                     |   | GFAS1.2 | (GFED4&4s), FRP (GFAS1),        | MODIS                   | Y       | 2001  | Kaiser et al. (2012)         |
| Satellite-based     | 4 | FINN1.5 | active fire counts (FINN1.5),   | MODIS                   | Ν       | 2003  | Wiedinmyer et al. (2011)     |
|                     |   |         | emis. factor                    |                         |         |       |                              |
|                     |   | FEER1   | Top-down: FRP, satellite AOD    | MODIS, SEVIRI           | Y       | 2003  | Ichoku and Ellison (2014)    |
|                     | L | QFED2.5 | constrained, emis. factor       | MODIS                   | Ν       | 2001  | Darmenov and da Silva (2015) |
|                     | ٢ | CMIP5   | Merged decadal fire trace gas   | GFED2, GICC, RETRO      | Y       | 1850  | Lamarque et al. (2010)       |
|                     |   |         | and aerosol emis.               | (model GlobFIRM used)   |         |       |                              |
| Multi course manaed |   | CMIP6   | Merged monthly fire carbon      | GFED4s, median of six   | Y       | 1750  | van Marle et al. (2017)      |
| Multi-source mergeu | 1 |         | emis., present-day veg. dist.,  | FireMIP model sims.,    |         |       |                              |
|                     |   |         | emis. factor                    | GCDv3 charcoal records, |         |       |                              |
|                     |   |         |                                 | WMO visibility obs.     |         |       |                              |

GFED4: Global Fire Emissions Dataset version 4; GFED4s: GFED4 with small fires; GFAS1.2: Global Fire Assimilation System version 1.2; FINN1.5: Fire Inventory from NCAR version 1.5; FRP: fire radiative power; FEER1: Fire emissions from the Fire Energetics and Emissions Research version1; QFED2.5: Quick Fire Emissions Dataset version 2.5; AOD: aerosol optical depth; GFED2: GFED version 2; RETRO: REanalysis of the TROpospheric chemical composition; GICC: Global Inventory for Chemistry-Climate studies; GCDv3: Global Charcoal Database version 3

# **Results: Evaluation of present-day fire emissions**

Global totals of fire emis. (2003~2008)

#### Global amounts

within benchmarks' range, except for MC2 (small BA) & LGG (high CC)

| Source     | С   | $CO_2$ | СО   | $\mathrm{CH}_4$ | BC     | OC    | PM <sub>2.5</sub> |
|------------|-----|--------|------|-----------------|--------|-------|-------------------|
| FireMIP    |     |        |      |                 |        |       |                   |
| CLM4.5     | 2.1 | 6.5    | 0.36 | 0.018           | 0.0021 | 0.020 | 0.042             |
| CTEM       | 3.0 | 8.9    | 0.48 | 0.025           | 0.0028 | 0.030 | 0.060             |
| JSBACH     | 2.1 | 6.5    | 0.32 | 0.013           | 0.0020 | 0.016 | 0.036             |
| JULES      | 2.1 | 6.9    | 0.44 | 0.024           | 0.0022 | 0.020 | 0.039             |
| LGG        | 4.9 | 15.4   | 0.90 | 0.047           | 0.0050 | 0.048 | 0.097             |
| LGS        | 1.7 | 5.6    | 0.26 | 0.011           | 0.0017 | 0.012 | 0.027             |
| LGSB       | 2.5 | 7.7    | 0.48 | 0.025           | 0.0025 | 0.024 | 0.047             |
| MC2        | 1.0 | 3.1    | 0.18 | 0.008           | 0.0011 | 0.012 | 0.025             |
| ORCHIDEE   | 2.8 | 9.2    | 0.44 | 0.018           | 0.0029 | 0.020 | 0.045             |
| Benchmarks |     |        |      |                 |        |       |                   |
| GFED4      | 1.5 | 5.4    | 0.24 | 0.011           | 0.0013 | 0.012 | 0.025             |
| GFED4s     | 2.2 | 7.3    | 0.35 | 0.015           | 0.0019 | 0.016 | 0.036             |
| GFAS1.2    | 2.1 | 7.0    | 0.36 | 0.019           | 0.0021 | 0.019 | 0.030             |
| FINN1.5    | 2.0 | 7.0    | 0.36 | 0.017           | 0.0021 | 0.022 | 0.039             |
| FEER1      | 4.2 | 14.0   | 0.65 | 0.032           | 0.0042 | 0.032 | 0.054             |
| QFED2.5    |     | 8.2    | 0.39 | 0.017           | 0.0060 | 0.055 | 0.086             |

## • Spatial pattern

#### Spatial pattern of 2003~2008 annual fire BC & sim.-obs. Cor

- > Overall ok, except for MC2
- CLM4.5, JULES, and LGSB are better
- Inter-model diff. mainly in tropics





### • Seasonal cycle

> overall ok

- SPITFIRE family (ORCHIDEE, JSBACH, LGS) is poorer in SH
- Only CLM4.5 can capture two peak periods in NH extratropics (only CLM4.5 models crop fires)



### Interannual variability

> Overall fail

partly due to a lack of modeling peat fires & tropical deforestation fires

#### CLM4.5, CTEM, & LGSB are better

| DGVMs    | GFED4   | GFED4s  | GFAS1. | FINN1.5 | FEER1 | QFED2.5 |
|----------|---------|---------|--------|---------|-------|---------|
|          |         |         | 2      |         |       |         |
| CLM4.5   | 0.73*** | 0.79*** | 0.63** | 0.62*   | 0.55* | 0.58**  |
| CTEM     | 0.51**  | 0.54**  | 0.63** | 0.60*   | 0.52  | 0.68**  |
| JSBACH   | -0.18   | -0.42   | 0.10   | 0.02    | -0.04 | 0.32    |
| JULES    | 0.33    | 0.31    | 0.31   | 0.56*   | 0.29  | 0.39    |
| LGG      | 0.08    | 0.03    | -0.15  | 0.01    | -0.20 | -0.03   |
| LGS      | 0.12    | 0.04    | -0.00  | 0.40    | -0.01 | 0.08    |
| LGSB     | 0.51**  | 0.64*** | 0.39   | 0.72**  | 0.56* | 0.55*   |
| ORCHIDEE | -0.13   | -0.25   | -0.16  | 0.29    | -0.10 | -0.10   |

\* (P<0.1) \*\* (P<0.05) \*\*\* (P<0.01)



Sim. – obs. Cor. of annual global fire PM<sub>2.5</sub> emis.

# **Historical changes and drivers**

- Historical global changes
- All models show a weak trend before 1850s, as CMIP6
- Inter-model diff. is large for the 20<sup>th</sup> century



• **Drivers** 

mainly LULCC & human population density change



- Regional long-term changes
- Inter-model diff. is largest in SH South America (SHSA), Africa (NHAF & SHAF), & central Asia (CEAS)



- Most models reproduce the upward trends in the CMIP6/CMIP5 estimates since 1950s in SHSA and till ~1950 in Africa
- Long-term trends in regional fire emis. in SHSA, Africa, and CEAS broadly explain simulated global trends



# **Summary and outlook**

**1. Dataset:** <u>https://zenodo.org/record/3386620#.XXaE1eRYaP8</u> with wide-ranging use:

- Develop multi-source merged fire emis. products and methods
- for the first time, allows end users to select all or a subset of model-based reconstruction for their regional or global inter-annual ~ multi-decadal research
- $\succ$  quantify uncertainty range of past fire emis. and their impacts

**2. Recent state of fire model performance:** most models can overall reproduce the amount, spatial pattern, and seasonality, but fail to simulate the interannual variability

**3.** population density and LULCC are the primary uncertainty sources in long-term trend simulation

Fire models need improve modeling of human effect on fire