TIME-VARYING METEOROLOGICAL DROUGHT FOR A CHANGING CLIMATE

Dr. Vinnarasi R.

Researcher

Department of Civil Engineering Indian Institute of Technology Delhi

Prof. C.T. Dhanya

Associate Professor

Department of Civil Engineering

Indian Institute of Technology Delhi

Introduction

- The assessment and quantification of drought is crucial as it is one of the major and costly extreme events.
- The prediction of drought and its characteristics like severity, duration, etc... is important for its planning and mitigation.
- Commonly used drought index is Standardardized
 Precipitation Index based on stationary assumption.
- Precipitation series has undergone remarkable changes, which emphasizes the need for developing a drought index incorporating the dynamic behavior (Non-stationarity) of the precipitation

Non-stationarity in Extremes ???

Non-stationarity: Change in the statistical parameters over time

Il Detection of Non-stationarity comparison of traditional and proposed method

Non-stationary Standardized Index

Identify drought prone areas in India Extraction of marginals

Modified SI index is used

Comparison between conventional and modified 1-month SI (26°N, 93 °E)

II. Identify drought prone areas in India Spatial variation of non-stationary parameter

- Aggregated rainfall series is extracted for all the months and for 12 time scales
- Goodness of fit for gamma distribution of each series is estimated and found 5.6% series failed KS test, which are fitted using empirical distribution
- > 90% of grids undergone term changes
- < 10% grids show no change in the time series</p>

Probability of drier events has increased

II. Identify drought prone areas in India Historical drought classification

SI identifies higher severity in the latter part and ignores in the initial part

In the year 1968 and 1994

- Rainfall depth -93.1/98.2mm
- Average rainfall -241.1/168.3mm
- Rainfall deficit -148/70.1mm
- Deficit of rainfall in 1934/1952 is 171.9/186.9mm
- D4/D3 category in SI
- D4 category in NSI

Highlights

- I. A dynamic meteorological drought index is proposed to capture the temporal dynamics of the precipitation
- 2. Unlike traditional-nonstationary modelling, the present approach detects the non-stationarity in each distribution parameter using a time-sliding window
- 3. NSI captured the historical drought, capturing the temporal dynamics of precipitation series in India and is more reliable than SPI.
- 4. SPI either over-estimate or under-estimate the drought status
- The proposed NSI is found to be a potential index for drought monitoring in a nonstationary climate.

Reference

- I. Vinnarasi R., Dhanya C.T., 2019, "Bringing realism into a dynamic copula-based non-stationary intensity-duration model", Advances in Water Resources, 130, 325-338
- Vinnarasi R., Dhanya C.T., 2016, "Changing characteristics of extreme wet and dry spell of Indian rainfall", Journal of Geophysical Research Atmospheres, 121(5), 2146-2160.
- 3. Mckee, T. B., N. J. Doesken, and J. Kleist (1993), The relationship of drought frequency and duration to time scales, (January), 17–22.