Examining saturated and unsaturated hydraulic parameter changes as a result of geochemical reactions in tailings

R. Akesseh¹, M. Edraki² and T. Baumgartl^{3,4}

¹PhD student, Sustainable Minerals Institute, The University of Queensland, St Lucia QLD 4069, r.akesseh@uq.edu.au

²Principal Research Fellow, Sustainable Minerals Institute, The University of Queensland, St Lucia, QLD 4069. m.edraki@cmlr.uq.edu.au

³Director, Geotechnical and Hydrogeological Engineering Research Group (GHERG), Federation University Australia, Gippsland VIC 3841, t.baumgartl@federation.edu.au ⁴Honary Professor, Sustainable Minerals Institute, The University of Queensland, St Lucia QLD 4069. t.baumgartl@uq.edu.au

1. INTRODUCTION

Water flow and solute transport in the unsaturated zone is governed by the hydraulic properties and the hydraulic conductivity function. However, geochemical reactions induce changes in the hydraulic properties as oxidation occurs in reactive materials. Transient flow experiment can be designed to indirectly estimates these changes. This is an easy and practical method which relies on easily measureable parameters. Our aim was to test the hypothesis of induced hydraulic properties changes due to geochemical reaction using inverse numerical modelling.

2. HYDRAULIC PROPERTIES ESTIMATION

- One dimensional vertical flow in rigid porous media is governed by Richards equation,
 - $\gamma I \gamma I \langle \gamma I \rangle$

3. MATERIALS AND METHODS

- Material Composition \blacktriangleright Dolomite (25%)
 - \blacktriangleright Pyrite (25%)

$$C(h)\frac{\partial h}{\partial t} = \frac{\partial}{\partial z} \left[k(h) \left(\frac{\partial h}{\partial z} - 1 \right) \right]$$

• Initial and Boundary condition

$$h(z,t) = h_0(z) \qquad t = 0, 0 \le z \le L$$
$$k(h) \left(\frac{\partial h}{\partial z} - 1\right) = E(t)$$

• van Genuchten-Mualem hydraulic function

$$S_e(h) = \frac{(\theta(h) - \theta_r)}{\theta_s - \theta_r} = [1 + (\alpha h)^n]^{-m}$$
$$K(S_e) = K_s S_e^{0.5} \left[1 - \left(1 - S_e^{1/m}\right)^m\right]^2$$

INVERSE ANALYSIS

• Hydraulic parameters α and n determined by minimisation of objective function

$$O(b) = \sum_{i=1}^{2} \sum_{j=1}^{M} \left[h(z_i - t_j) - h^*(z_i, t_j, b) \right]^2$$

- Solution by Levenberg-Marquardt algorithm
- Solution was implemented in HYDRUS-1D

- ➢ Quartz (35%)
- \succ Chlorite (15%)
- Two categories of particle size range
 - <75 μm
 - ➤ 75-200 µm
- Column: 4 cm, bulk density: 1.4 g/cm3
- Nine drying and wetting cycles over nine months Reserviour
- Initial hydraulic parameters determined by desiccation
- Curve fitting in RETC
- Transient water flow experiment by evaporation
- Mass of water loss was measured by a balance
- Hydraulic conditions in the tailings measured by tensiometer

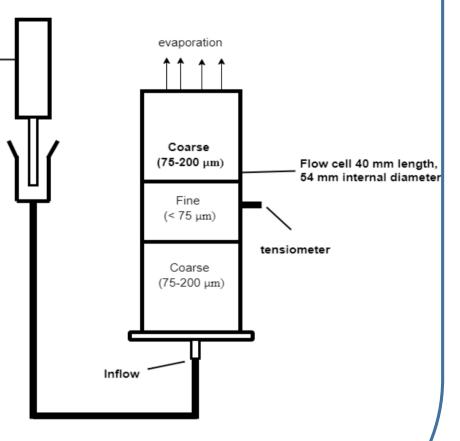
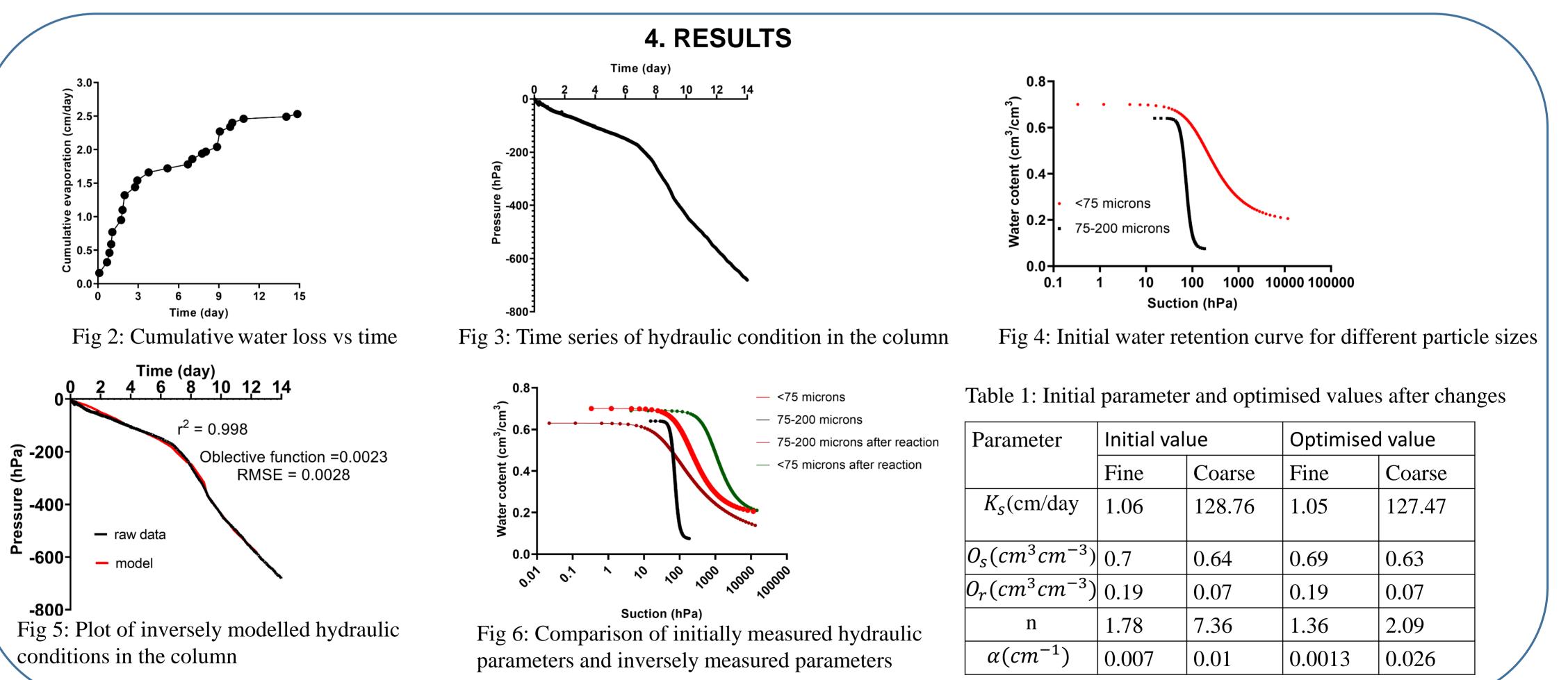



Fig 1: Evaporation Experiment

Table 1: Initial	parameter and	optimised	values after changes
------------------	---------------	-----------	----------------------

Parameter	Initial value		Optimised value	
	Fine	Coarse	Fine	Coarse
<i>K_s</i> (cm/day	1.06	128.76	1.05	127.47
$O_s(cm^3cm^{-3})$	0.7	0.64	0.69	0.63
$O_r(cm^3cm^{-3})$	0.19	0.07	0.19	0.07
n	1.78	7.36	1.36	2.09
$\alpha(cm^{-1})$	0.007	0.01	0.0013	0.026

5. CONCLUSION

- The model results show that hydraulic parameters of the studied material changed over time
- The inverse model was effective in establishing these changes
- On the assumption of the saturated volumetric and saturated conductivity decreased by 1% during this period the alpha and n parameters of the coarse and fine material changed with time

REFERENCES

- NAKHAEI, M., ŠIMŮNEK, J. J. J. O. H. & HYDROMECHANICS 2014. Parameter estimation of soil hydraulic and thermal property functions for unsaturated porous media using the HYDRUS-2D code. 62, 7-15.
- ROMANO, N. & SANTINI, A. 1999. Determining soil hydraulic functions from evaporation experiments by a parameter estimation approach: Experimental verifications and numerical studies. Water resources research, 35, 3343-3359.
- ŠIMŮNEK, J., VAN GENUCHTEN, M. T. & WENDROTH, O. 1998. Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Science Society of America Journal, 62, 894-905.
- TOORMAN, A., WIERENGA, P. & HILLS, R. 1992. Parameter estimation of hydraulic properties from one-step outflow data. J Water Resources Research, 28, 3021-3028.