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Introduction

We present laboratory observations of the hydro-mechanical
interactions of hydraulically isolated faults. Shear-induced
dilation or compaction of the fault zone can produce important
variations in P,. Feedback of fault strength occurs through
variations in effective normal stress:

et = T/(on — Pp)

Proposed effects include Dilatancy Hardening, Thermal
Pressurization, P, Compartmentalization/Overpressure, and
Slow Slip

Yet, few direct measurements of P, transients exist.



New Approach: Direct Measurement of
Fault Pore Pressure

Miniaturized Pore Pressure Transducer
Provides direct measurement of Fault Zone
Pore Pressure
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Stick-Slip followed by Slow Slip Events

Bare Surface Granite, Isolated Fault
Pconf = 40 MPa
Loading Rate = 0.2 ym/s
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1D Heat Calculation
for Stick-slip Event
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Sequence of Slow Slip Events

Bare Surface Granite, Isolated Fault

Pconf =40 MPa
Loading Rate = 0.2 ym/s
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o p = fault pore pressure ,
diffusivity = c* { ¢ = porosity

“——— p~ = pore pressure in
surroundings

Figure 2. Simple spring slider model.

Assumed: pore fluid obeyed diffusion eq
With porosity change as a source term

N

cvzp_% - 2*3& (12a)

B = &(Br+PBy) (12b)
a (12¢)

c =

vB

Constitutive Equations for Porosity

Following the critical state concept in soil mechan-
ics, we postulate the existence of a steady state poros-
ity, although here we regard that value as a function of
velocity. The experimental data discussed above sug-
gests that at constant slip speed porosity evolves to-
ward steady state over a distance d.. Thus, by analogy
with (3), we consider the simple evolution equation for
porosity

$= _Lc(¢_¢al)’ (14)

where here, and /n what follows, it is implicit that we
are referring to jnelastic changes in pore volume, i.e., ¢
corresponds to Mplastic.

point, we take the steady state porosity
on velocity. Rapid rates of deformation

(15)

Also assumed porosity change
only depended on velocity

from Segall and Rice (1995)
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Shear Stress, MPa

Coefficient of Friction, u
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Shear Stress, MPa

Velocity Stepping Sequence
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Stress, MPa

Shear Stress, MPa
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Conclusions

Pore pressure transients from 0.1 to >10 MPa are observed
in hydraulically /solated or Partially Isolated faults

Both Increasing P, (compaction) and Decreasing P, (dilation)
occur as precursors and coseismically

Dilation 1) delays stick-slip and 2) may lead to slow slip

Compaction 1) de-stabilizes the fault and 2) may cause an
accelerated preparation phase

Dilation/Compaction are both Displacement and Velocity
sensitive

0.6 mm gouge layer produces P, transients that are an order
of magnitude larger than transients on bare surface granite

In many cases, P, transients dominate fault stability when
compared to Rate and State Friction effects



