

Geodetic determination of the gravitational potential difference for the optical lattice clock comparison in the Kanto region in Japan

Yoshiyuki Tanaka¹, Yosuke Aoki², and Ryuichi Nishiyama² ¹Department of Earth and Planetary Science, University of Tokyo ²Earthquake Research Institute, University of Tokyo

Acknowledgements: Some geodetic data were provided by the Geospatial Information Authority of Japan and Kanagawa, Saitama and Tokyo Prefectures.

> This study was supported by the JST project, "Space-time information platform with a cloud of optical lattice clocks". https://www.jst.go.jp/mirai/jp/uploads/saitaku2018/JPMJMI18A1_katori.pdf

Background

- The gravitational red shift: time runs slower where the gravitational potential is lower. $\frac{dt_{high}}{dt_{low}} = 1 + \Delta W/c^2, \Delta W = g\Delta H$
- Atomic clocks can detect a relative difference in the clock frequencies.
- Terrestrial clocks can be used as an altimeter.

Region (e.g.)	Geology /network scale	Main purpose	Required uncertainty
Europe	Stable continent	Unification of height reference systems	10 ⁻¹⁷ or better (cf leveling)
Japan	Unstable island arc	Crustal deformation monitoring	10 ⁻¹⁸ ≤24h (cf GNSS)

 Fiber-linked optical lattice clocks (OLCs) can achieve ~10⁻¹⁸ (corresponding to 1-cm height difference) uncertainty within several hours.

Height reference system in Japan

• Helmert orthometric height

- Geoid model by the Geospatial Information Authority of Japan (GSI) (Miyahara et al., 2014), SD=1.8 cm
- ~1300 cGNSS stations with average spacing of 20-25 km and the first-order leveling routes over 18,000 km for crustal deformation monitoring
- GNSS-leveling and gravimetric approaches were used for the longer- and shorter-wavelength determination, respectively.

Crustal vertical velocity in Japan

Murakami and Ozawa (2004)

Recent progress regarding OLCs in Japan (selected)

- Chronometric heights obtained by OLCs were compared with geodetic survey results:
 - RIKEN-UTokyo: 5 x 10⁻¹⁸, OLCs in laboratory environment (Takano et al., 2016)
 - Observatory of Tokyo Skytree: 1-5 x 10⁻¹⁸, portable clock (Takamoto et al., 2020)
- NTT-RIKEN-UTokyo: Fiber-linked clocks will become available soon.

• 400-km fiber link toward the NE Japan (Mizusawa) under development

Purpose of this study

- Our ultimate goal is to utilize OLCs to assist GNSS to monitor vertical deformation.
- In this study, we determine the static potential difference between the NTT and RIKEN clock sites to confirm the uncertainty of the portable clocks over a 100-km-scale fiber network, using geodetic observations.
- We discuss the error budget for the geodetic result.

Red: Expected uncertainty by using OLCs

- Faster positioning of vertical deformation than in GNSS (1 cm in several hours)
- Free from atmospheric noise
- It can separate apparent seasonal variations inherent in space geodetic techniques

Method

Leveling-gravity method

(i) Direct integration of the potential increment

$$\Delta W_{AB} \cong \sum_{i} \bar{g}_{i,i+1} \Delta H_{i,i+1} \qquad A, B: \text{clock sites}$$

(ii) Computation based on the definition of Helmert orthometric height

 $W_{A/B} = \bar{g}_{A/B}H_{A/B}$ $\bar{g}_{A/B} \cong g_{A/B} + 0.0424H_{A/B}$ where a Bouguer plate with a uniform density (2.67 g/cm³) is assumed.

- We calculate $W_B W_A$ by combining local leveling and gravity surveys near the clock sites (i) and the result of regional leveling surveys regularly measuring the Helmert height (ii).
- We correct for crustal movement on the route (ii) to adjust the epochs to 1/1/2020 with a least-square regression.

$$g_{i,i+1}$$
: average surface gravity
between site i and i+1
 $\Delta H_{i,i+1}$: observed leveling height
between site i and i+1
 \bar{g}_B : average gravity along the plumb
line at site B
 $H_{A,B}$: orthometric height
 a_B : surface gravity at site B

Delva et al., (2019)

Hofmann-Wellenhof & Moritz (1967)

Leveling survey route

Data

• Leveling data

- A. GSI's crustal deformation monitoring data (1/a) [2013-2019]
- B. Municipal government data for monitoring groundwater movement (0.5-1/a) [2012-2019]C. Local (<10 km) survey near the clock sites [2020]
- A-C are based on 1st order survey (uncertainty $\leq 2.5\sqrt{S/\text{km}}$ [mm], w temperature correction, no tidal corrections)
- Gravity data
 - Values on routes for A&B were calculated by the GSI, based on JGSN75 (The Japan Gravity Standardization Net 1975) (GSI, 1976). Uncertainty is 0.1 mGal (Kuroishi & Murakami, 1991).
 - Values on route for C were observed with a L-R G-type gravimeter (#705) and an absolute gravimeter FG5#109. Deviations from the linear drift after a tidal correction were ~5 microGals.

Examples of leveling & gravity survey

- Leveling survey inside the buildings: Feb. 4 and 18, 2020 (Showa holdings Co. Ltd.)
- Gravity measurement inside the buildings: Feb. 18 and Mar. 24, 2020

The mask is probably for preventing the bubble from being warmed by the breath.

Preliminary result

Sites	01-02	**RIKEN	A27	**NTT
*Helmert height [m]	36.1236	35.9523 ^a	25.9868	99.2568 ^b
Potential [m ² /s ²]	353.936	352.257 ^c	254.616	972.499 ^d

*Height at the Tokyo Origin (Ko) is fixed at 22.9994 m

** Height at the highest point on the clock chamber (exact location of the atom clouds: t.b.d.)

- dH (b-a) and dW (d-c) = 63.3045 \pm 0.0114 m, 620.242 \pm 0.112 m²/s²
- The biases associated with the origin of height and the potential value on the domestic geoid model vanish when taking the difference between the two sites.

The error budget (height)

- Allowable measurement error = $\pm 2.5\sqrt{S/\text{km}}$ [mm] $\cong \pm 25$ mm
- Postseismic deformation of the 2011 Tohoku eq and secular plate motion
 - Leveling data over 4-6 yr time spans show average vertical velocity on the route $|V| < 2 \pm 1 \text{ mm/yr}$ (figure)
- Routes A&B: Fitting y = a(t 2020) + b against the repeated survey data from 2013-2018. The resultant correction for epochs = $-1.6 \pm 1.8 \text{ mm}@A27$ (NTT) and $0.3 \pm 1.3 \text{ mm}@01-02$ (RIKEN).
- Route C: Average closure of round-trip surveys/1 km x distance (2.3 mm)
- Tidal potential changes during each observation
 - OLC data are typically averaged over >1 day.
 - Kuroishi (2010) estimated the effects of the solid-Earth and ocean tides on four representative routes across Japan. The total error is 11 mm at the maximum for 100-km distance, comparable to the estimate of Vanicek (1980): 0.1 mm/km for the solid-Earth tides.

These lead to the maximum uncertainty of ± 11.4 mm in dH and 9.8 m/s² x ± 11.4 mm= ± 0.112 m²/s².

Spatial pattern of the vertical velocity

The velocity obtained in our study probably reflects plate motion (faster subsidence toward South)

The error budget (gravity)

- Uncertainty from surface gravity (\pm 0.1 mGal on routes A&B and \pm 0.005 mGal on route C)
 - The largest height difference between BMs adjacent to each other is 30 m.
 - The corresponding maximum height difference≅0.1 mGal/980 Gal x 30 m=0.0031 mm
 - # of BMs \cong 70. The maximum unc. = 0.0031 mm x 70 = 0.22 mm or 0.002 m²/s², which is negligible.
- Uncertainty due to the simple Bouguer correction (applied to sites A27 and 01-02)
 - $(\gamma + 2 \times 2\pi G\rho)H/2 = -0.0424 \text{ mGal/m}$
 - When $\rho = 1 \text{ g cm}^{-3}$, the factor=-0.1124 mGal/m. (-0.1124+0.0424) mGal/m x 26/36 m=-1.8/-2.5 mGal.
 - The resultant max. unc. for the potential difference could be $2.5 \times 36 \times 10^{-5} = 0.0009 \text{ m}^2/\text{s}^2$, which is negligible.
- The effect of the permanent tide should be theoretically restored in the analyses of gravity data, but it is also negligible (<0.1 mGal (Ekman, 1989)).

 \rightarrow The uncertainty of the potential is dominated by the uncertainty of the height determination.

Summary and future work

- The 100-km-scale optical fiber network connecting RIKEN and NTT with portable OLCs with 10⁻¹⁸ –order uncertainties will become available soon in Japan.
- We estimated the potential difference between the two clock sites in advance, based on the leveling-gravity method.
- The maximum uncertainty for the potential difference originating from the height and gravity measurements was estimated as ±1.1 cm in the unit of height. This uncertainty is dominated by the tidal effects on the inclination of the potential surface during measurements, which was only roughly estimated in this study.
- We will estimate the tidal effects through the observation route more realistically.
- Temporal changes in the potential due to groundwater variations \rightarrow GRACE-FO
- Effects of non-tidal variations in the sea-level on the inclination of the surface potential \rightarrow Numerical simulation
- We will carry out an independent confirmation by the GNSS-geoid method.