

Orthomosaics of Historical Aerial Photographs and Horizontal Accuracy Analysis

Ji Won Suh and William Ouimet University of Connecticut

- I. Introduction
- II. Data and Method
- III. Results
- IV. Discussion and Conclusion

I. Introduction

- Research Background
- Research Objective

I. Introduction Research Background and Objective

- One of grand challenges in terms of land use dynamics is to understand anthropogenic landscape
- Historical aerial photos are one of important data to understand historical landscape
- However, there are several issues to handle historical air photos

Problems

P1. Data accessibility of historical dataP2. Not georectified and fragmentedimages

P3. insufficient information to align and calibrate photos

P4. Low image quality due to scanned data

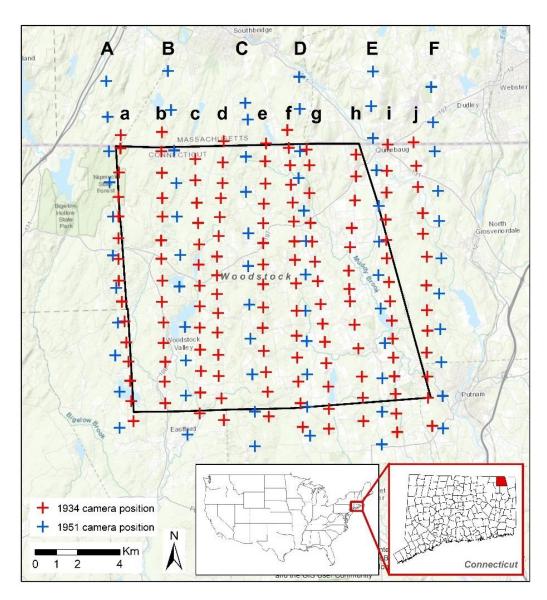
Possible solutions

S1. UConn Magic provides air photos (1934~)S2. Build an orthomosaic

S3. Use supplementary data (e.g. ground control point; GCP)S4. Select high-quality image among data for orthomosaicking procedure

I. Introduction Research Background and Objective

- In this context, this study aims
 - 1) To propose a method for the automated orthomosaicking of historical aerial photographs
 - To analyze the horizontal accuracy of these outputs by comparing outputs of 1934 and 1951
- In particular, specific research questions include
 - 1) How to build an orthomosaic from historical non-georectified air photos?
 - 2) How to assess horizontal accuracy of orthophotos?
 - 3) What factors affect the quality of orthomosaic?


II. Data and Method

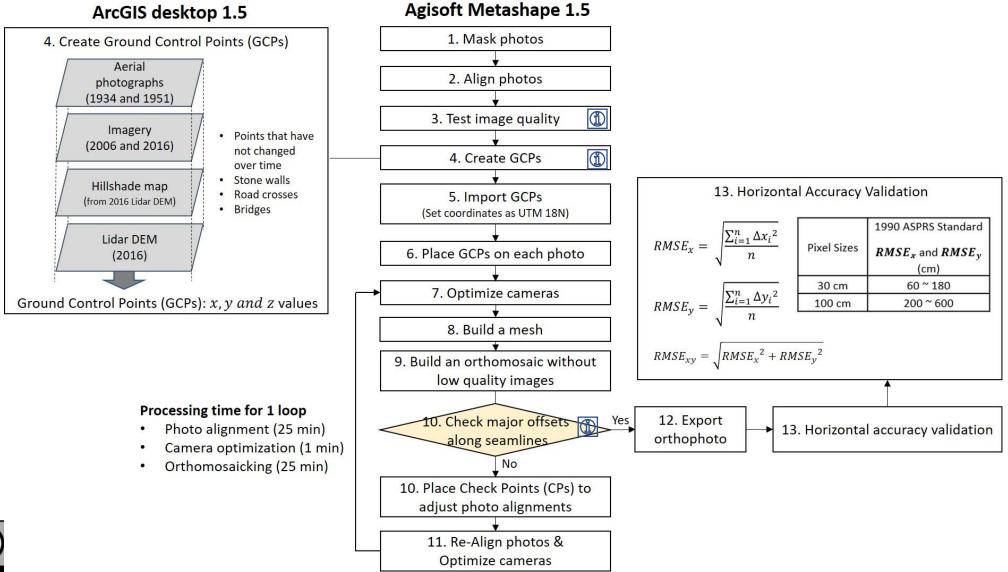
- Study Area
 - Data
- Method

II. Data and Method Study Area

- Woodstock town, CT, USA (159 km^2)
- 141 images for 1934
- 68 images for 1951

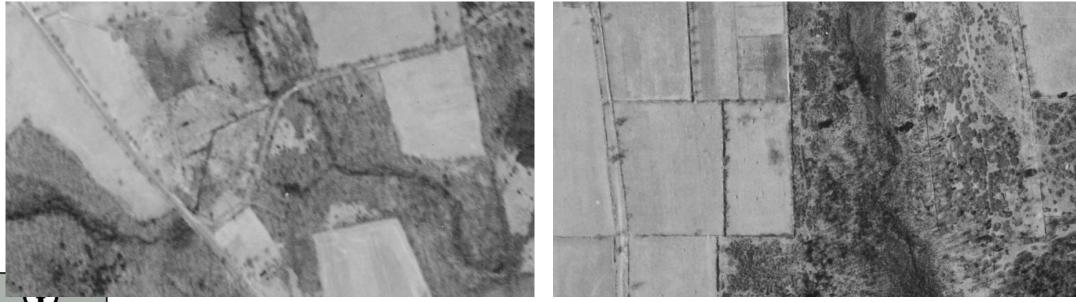
The map of study area and distribution of aerial photos for 1934 and 1951

II. Data and Method **Data**


Data	Year	Resolution (map scale)	The number of photographs (area)	Sources	Note		
Aerial photographs (Black and White)	1934	0.3 m (1:12,000)	141 (264 Km²)		Photos taken in 1934 April		
	1951	0.9 m (1:20,000)	68 (380 Km²)	UConn Air Photo Archive ¹	09/05/1951, 10/13/1951, 11/25/1951, and 11/27/1951		
Ortho-photographs	2006	1 m	-	CTECO ²			
	2016	0.07 m	-	NAIP ³	Deference data for Cround		
Digital Elevation Model (DEM)	2016	1 m	-	CTECO	Reference data for Ground Control Points (GCPs)		
Hillshade Image	2016	1 m	-	2016 DEM			

¹ https://connecticut.maps.arcgis.com/apps/View/index.html?appid=044e8e6266aa44dc8ccc9b6e2eecacb4

^[2] Connecticut Environmental Conditions Online


[3] National Agriculture Imagery Program

Step 3. Test image quality

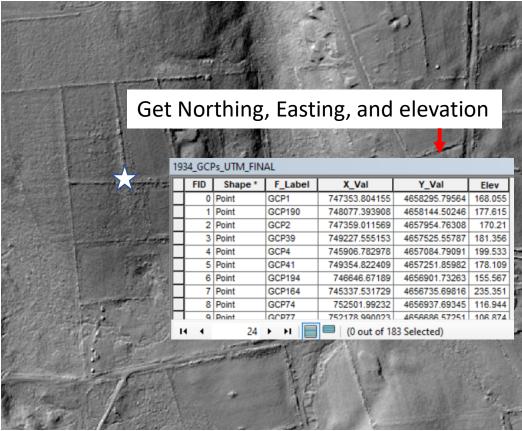
- Image quality can be estimated based on sharpness of image (0 < Image quality < 1) (Agisoft LLC, 2019)
- Estimated image quality
 - 1934: 0.47 to 0.66 (Note: image less than 0.5 not used for orthomosaiciking step)
 - 1951: 0.78 to 0.84

Step 4. Create GCPs

Priority:

1) Stonewall

2) Road (intersection or edge)


3) Fixed structures (i.g. bridge, dam, etc.)

4) Natural landscape (i.g. creek intersection)

1934 Aerial photos

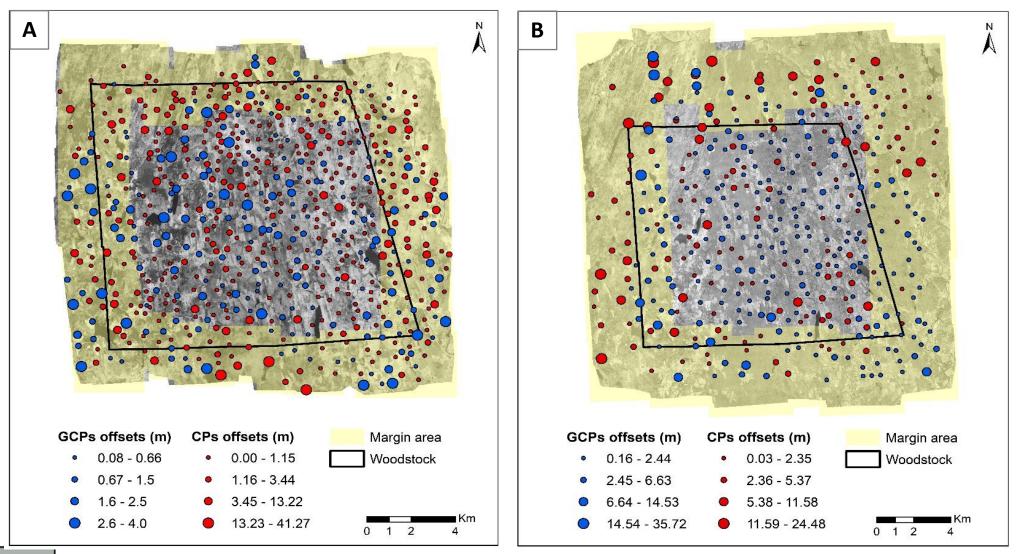
Hillshade or orthophotos

ΒY

Step 10. Check the quality of orthomosaic

Good

Bad (15m offset)



Ĥ

ΒY

The Results of 1934 and 1951 Orthomosaics with Offsets

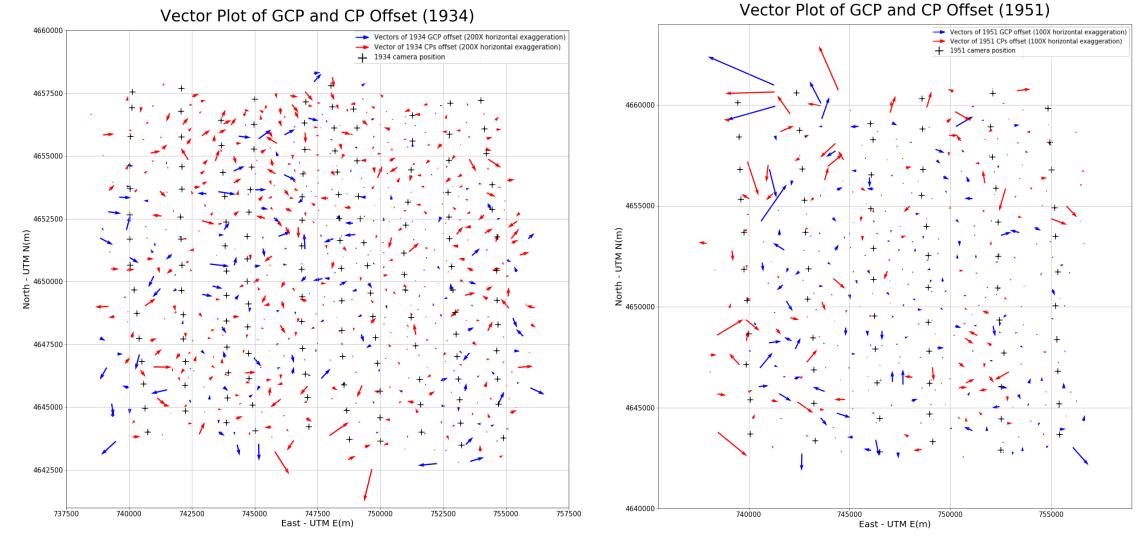
The results of orthomosaics and distribution of offsets (A: 1934; B: 1951)

The Results of Horizontal Accuracy Assessment

The horizontal accuracy results from 1934 and 1951 orthomosaics

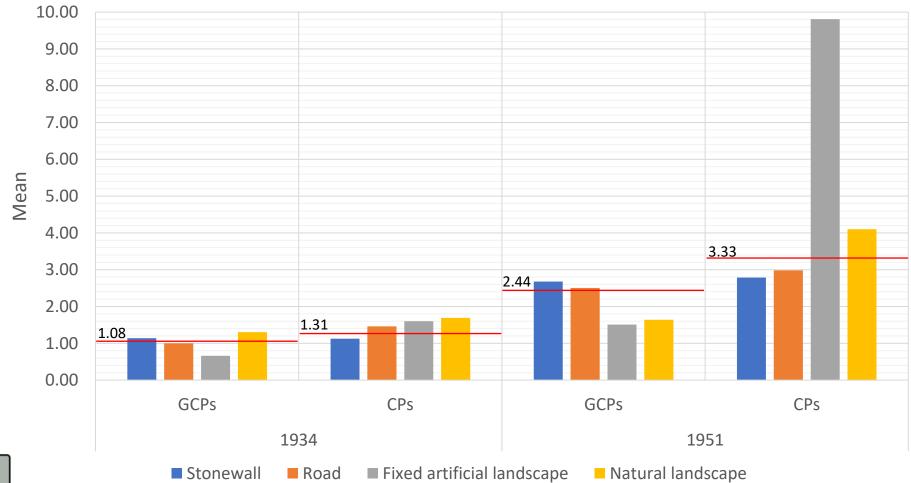
	19	34	1951			
	GCPs	CPs	GCPs	CPs		
Count	219	446	235	167		
RMSE _x (m)	1.06	0.89	3.42	3.71		
RMSE _y (m)	0.92	0.87	2.85	3.58		
RMSE _{xy} (m)	1.40	1.24	4.45	5.16		
1990 ASPRS $RMSE_{xy}$ (m)	0.6~1.8		2.0~6.0			

The Comparison of GCPs and CPs Offsets between Margin and Inside Area


The statistics of GCPs and CPs offset from different areas (margin area and inside area)

	1934						1951					
	GCPs			CPs		GCPs			CPs			
	Count	Mean offset (m)	Std.									
Margin area	116	1.20	0.97	230	1.67	1.41	45	4.12	6.68	52	4.95	5.80
Inside area	103	0.96	0.82	216	0.92	1.20	190	2.04	2.45	115	2.60	2.44
Total	219	1.08	0.90	446	1.31	1.24	235	2.44	3.73	167	3.33	3.96

- Offset was calculated based on Euclidean distance
- The reference points (GCP and CP) from margin area show the large offsets compared to those from inside area



Vector Plots of GCP and CP Offset

III. Results The Comparison of GCP and CP Offsets by Point Type

Mean Offset of GCPs and CPs by Point Class

IV. Discussion and Conclusion

IV. Discussion & Conclusion

The factors affecting the horizontal accuracy of orthophoto

- 1) The number of reference points (GCPs and CPs)
 - Trend: # reference points \uparrow , accuracy \uparrow
- 2) The distribution of reference points (GCPs and CPs)
 - Ideally, even distribution of reference points can increase accuracy. However, a number of reference points from stonewall (relatively static points), road intersection can help to get acceptable accuracy of orthophoto in terms of 19990 ASPRS standard
- 3) The location of reference points (margin area vs. inside area)
 - Trend: inside area shows higher accuracy compared to margin area
- 4) The resolution of orthomosacics
 - High resolution shows higher accuracy (e.g. 1934: 0.3m vs. 1951: 1m)
- 5) The position of cameras

BY

- Trend: the larger lateral distance between cameras, E-W offsets as well as high offsets can take place
- 6) Season that air photo were taken
 - (i.g. 1951): it is difficult to place reference points at exact location due to tree cover

Reference

- 1. Agisoft. 2019. Agisoft Metashape User Manual.
- 2. Baker, W. L., J. J. Honaker, and P. J. Weisberg. 1995. Using aerial photography and GIS to map the forest-tundra ecotone in Rocky Mountain National Park, Colorado, for Global Change Research. Photogrammetric Engineering and Remote Sensing 61 (3):313–320.
- 3. Gennaretti, F., M. N. Ripa, F. Gobattoni, L. Boccia, and R. Pelorosso. 2011. A methodology proposal for land cover change analysis using historical aerial photos. Journal of Geography and Regional Planning 4 (9):542–556.
- 4. Kadmon, R., and R. Harari-Kremer. 1999. Studying Long-Term Vegetation Dynamics Using Digital Processing of Historical Aerial Photographs. Remote Sens. Environ 68:164–176.
- Marignani, M., D. Rocchini, D. Torri, A. Chiarucci, and S. Maccherini. 2008. Planning restoration in a cultural landscape in Italy using an object-based approach and historical analysis. Landscape and Urban Planning 84 (1):28– 37.
- 6. Rocchini, D., G. L. W. Perry, M. Salerno, S. Maccherini, and A. Chiarucci. 2006. Landscape change and the dynamics of open formations in a natural reserve. Landscape and Urban Planning 77 (1–2):167–177.
- Zomeni, M., J. Tzanopoulos, and J. D. Pantis. 2008. Historical analysis of landscape change using remote sensing techniques: An explanatory tool for agricultural transformation in Greek rural areas. Landscape and Urban Planning 86 (1):38–46.

Thank you

ji.suh@uconn.edu

