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1. Observational Paradigms and Unified Model of Fluid-Induced Seismicity

Natural and anthropogenic processes involving the injection or
migration of fluids within rock formations can induce earth-
quakes. Field observations led to the formulation of three differ-
ent paradigms relating seismic hazards and injected volume (V)
[1], useful to develop risk mitigation strategies [2]. According to
them fluid-induced earthquakes are either:

A) small and their number is proportional to V [3,4];

B) bounded in size and magnitude by the stimulated area [5];

C) indistinguishable from tectonic earthquakes [6].

All three paradigms naturally coexist in the unified conceptual
model presented here, accounting for stick-slip mechanics [7]
and non-homogeneous pore-pressure stimulation [8] caused by
fluid injection in a prestressed region. The loading history and
heterogeneity of the host medium determine which of the three
paradigms dominates. In non-tectonic settings two populations
of events triggered at different pore-pressure levels with different
Gutenberg-Richter b-values are superposed. Stress-levels and V
determine their proportions. In active tectonic settings, fluid in-
jection triggers tectonic earthquakes.
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2. Micromechanical Toy Model: Pore-pressure Diffusion + Fractures

We consider a 2D-lattice of sites (l) with local pore pressure (pp,l), scalar stress field (τs,l), and strength thresholds (sl).

1) Fluid flows through channels connecting adjacent
sites (i, j) with random permeability νi,j.

April 23, 2020 3 / 8

http://www.crm.cat/en/About/People/Researchers/JBaro/Pages/PersonalContact.aspx?ItemId=CO003414


2. Micromechanical Toy Model: Pore-pressure Diffusion + Fractures

We consider a 2D-lattice of sites (l) with local pore pressure (pp,l), scalar stress field (τs,l), and strength thresholds (sl).

1) Fluid flows through channels connecting adjacent
sites (i, j) with random permeability νi,j.

The fluid front advances through the connection at front
i → j with higher pp,i − pp,j + νij.

April 23, 2020 3 / 8

http://www.crm.cat/en/About/People/Researchers/JBaro/Pages/PersonalContact.aspx?ItemId=CO003414


2. Micromechanical Toy Model: Pore-pressure Diffusion + Fractures

We consider a 2D-lattice of sites (l) with local pore pressure (pp,l), scalar stress field (τs,l), and strength thresholds (sl).

1) Fluid flows through channels connecting adjacent
sites (i, j) with random permeability νi,j.

The fluid front advances through the connection at front
i → j with higher pp,i − pp,j + νij.

2) The pressure profiles (pp(d)) decay exponentially
with distance (d) from source. A minimum pressure
gradient pmin is imposed at max. distance from source.

Tuning pmin we control a transition form an invasion
percolation limit [8] (capillarity and/or brittle
poromechanics dominate) to a viscous flow limit.
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3) Fractures are generated following a simplified
Mohr-Coulomb condition:

τl >τs,l = τc,l + µl(p0,l − pp,l) = sl − pp

Strengths are uniformly sampled sl ∼ U(smin, smax).
We consider spring-block model interactions [7]:
On slip τl → 0 and δτl = ατl to n.n..
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Strengths are uniformly sampled sl ∼ U(smin, smax).
We consider spring-block model interactions [7]:
On slip τl → 0 and δτl = ατl to n.n..

Fractures initiate through (wet) slip by increase in pp,l(t)
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3) Fractures are generated following a simplified
Mohr-Coulomb condition:

τl >τs,l = τc,l + µl(p0,l − pp,l) = sl − pp

Strengths are uniformly sampled sl ∼ U(smin, smax).
We consider spring-block model interactions [7]:
On slip τl → 0 and δτl = ατl to n.n..

Fractures initiate through (wet) slip by increase in pp,l(t)

and propagate through (dry) slip due to δτl .
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3. Spatiotemporal Profiles

All events are initiated at site l by variations of the local pore pressure (pp,l(t)). These can be either caused by:

(i) the propagation of fluid to newly percolated regions. This initiates events at the boundary through the exploration
of new accessible areas (see [8]) and exhibit spatial clustering; or

(ii) Global changes in the pp(d) profile when the max. path length is increased. This initiates events in the whole area
through the simultaneous activation of multiple sites and exhibit temporal clustering ∗.

Overall, we observe a migration of event-locations with V0.5.
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∗ These features are mere artifacts of the pore-pressure profile as implemented in our model.
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4. Extension and Magnitudes of Events

We consider three different (related) event magnitudes:

• A: The area of fracture or number of sites slipped at least once in the
event;

• S: The size or total number of slips;

• ∆ :=
∑

i∈{slips}

τs,i : The total stress released.

We assume proportionality between ∆ and the moment released (M0).

We observe:

• A scaling relation with a transition due to finite size effects:

A ≈ S(∼ ∆) → A ∝ S2/3.

• A power-law distribution of ∆ (with exponent γ∆ := 3/2b∆ + 1).

• High variability in power-law exponents or b-values (as shown in [4]):

- high b-values (γ∆,I ≈ 2.6) for low stress levels (high smax).
- low b-values (γ∆,II ≈ 1.27) for high stress levels (low smax).

• We argue that this transition is caused by the co-existence of critical and
subcritical events.

(see next)
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5. Equivalent Statistical Model
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The toy model predicts three different kinds of events:

1) In non-tectonic settings, two populations coexist, depending on the injected
volume (V) and the stress level (smax):

dN(M0) ∝ (xI(smax)PI(M0; smax) + xII(smax)PII(M0; smax)) dV

Population I: A stationary front of subcritical regions where (pp < pc);
Superposition of power-law distributions with different cutoffs ⇒ steep

power-law (γ∆,I =
3

2
b∆,I + 1 ≈ 2.6) of small events [3,4]:

PI(M0; γI,M0,c)dM0 =

(

M0

M0,c

)−γI γI − 1

M0,c
dM0

Population II: Critical regions close to injection (pp & pc) bounded by fluid
[5]; critical distribution of spring-blocks in 2D; (γ∆,II ≈ 1.27):

PII(M0; γII,M0,s,M0,c)dM0 =
M

−γII
0 exp(−M0/M0,s)

∆
1−γII
c Γ

(

1 − γII,
M0,c

M0,s

) dM0

where: log10(M0,s) = Λ(smax) + η(smax) log10(V)

Hence, the characteristic sizes of pop. II increase with V.
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The toy model predicts three different kinds of events:

2) In a (SOC) critically loaded tectonic setting, events are triggered by pp but
unbounded in space [6].
All events belong to a single category:

Population III: Critical distribution of spring-block in 2D; (γ∆,II ≈ 1.27):

dN(M0) ∝ PIII(M0; smax)dV ; PIII(M0)dM0 =

(

M0

M0,c

)−γII γII − 1

M0,c
dM0

∗Notice that pop. III would appear as a natural extension of pop. II to criticality when

considering a good proxy for the stress-levels. In our case, tuning smax is not enough to

bring the reservoir to critical stress levels. We use alternative simulation with critically

pre-stressed reservoirs instead.
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6. Hazard Assessment based on the Equivalent Statistical Model

Although the micromechanical model represents an oversimplified picture of the phenomena, the equivalent
statistical model is based upon reasonable assumptions, provides some new insights on the expected hazard
measurements, and is able to reconcile the three different paradigms [1]:

Hazard Measurement 1:
Examples of M0 ∼ ∆. By fitting {x̂II, Λ̂, η̂}. Cumulative number larger than ∆ (as reported in [4,5]):
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Lower panels show the inverse of the survival rate, i.e. the probability for the first record event above ∆0.
Yellow lines represent the prediction considering only pop. I.
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6. Hazard Assessment based on the Equivalent Statistical Model

Although the micromechanical model represents an oversimplified picture of the phenomena, the equivalent
statistical model is based upon reasonable assumptions, provides some new insights on the expected hazard
measurements, and is able to reconcile the three different paradigms [1]:

Hazard Measurement 2:
Record seismic moment, i.e. seismic moment of the stronger event up to the injection of V (as reported in [1]):
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proportionality: Mmax

0 ∼ V (exponents in [9]).

pop. I dominates (small events, model A [3,4]).

pop. II dominates (bounded events, model B [5]).

Orange line: Numerical results for high stress
level (smax = 1.4), always pop. II.

Yellow line: Numerical results for low stress level
(smax = 2.2), pop. I → pop. II.

Tectonic setting (pop III) (model C [6]).
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Unified model: The results obtained from the numerical simulations of the conceptual micromechanical model presented here can be described in terms of a
unified statistical model. Given a subcritical distribution of strength values si , the general solution can be interpreted as a superposition of two populations

of events (population I and II) such that the number of events: dN(M0 > M0|t) = 10
Σ

V(t)
(

xIPI(M0 > M0) + xIIPII(M0 > M0|t)
)

dt where:

PI(M0 > M0) =
(

M0/M0,c

)− 2
3

bI ; PII(M0 > M0|t) = Γ
(

−2bII/3,M0/M
∗
0 (t)

)

/Γ
(

−2bII/3,M0,c/M
∗
0 (t)

)

, Γ(b, x) is the

upper incomplete Gamma function and Σ is an absolute seismogenic index. We assume M0 to be proportional to S or ∆. Events in population I have
intrinsic characteristic scales (1 < 2bI/3) and are nucleated at low pore-pressures (blue region out of the dashed line in the side diagram). The distribution
of Population II is fat-tailed (0 < 2bII/3 < 1) but constrained inside a region delimited by a lower pore-pressure value (inside the dashed line) imposing

a characteristic maximum scale M
∗
0 . The unified model is able to reproduce the statistical properties of micro-seismic events predicted by the following

three paradigms.

Paradigm A: Microseismic events are contained within the stimulated area and occur upon the activation (color patches) of inactive (grey patches) pre-
existing fractures which partially determine a time-independent distribution of seismic moments [4,10]. The number of susceptible fractures and the
probability of activation increases with pore-pressure [4,10]. Hence, the number of fractures above a seismic moment M0 reads N(M0 > M0|t) =

10
Σ

V(t)P(M0 > M0). The seismogenic index Σ completely determines the hazard rates and is observed to be constant over time in several HF and
EGS opearations [11]. The maximum moment in a sequence of seismic events is determined by record statistics, and its expected value can be estimated by

inverting N(M0 > M
max
0 |t) = 1. Other models [9] impose constrains in energy, giving rise to time-dependencies in the absolute Σ and alternative

M0(V) relations.
In terms of the unified model: Fractures in paradigm A are statistically similar to population I, and compatible with our numerical results at low stress levels

(high smax values) and small injection volumes (yellow lines here). In that regime: Mmax
0 ∼ V

3
2bI (blue line here).

Paradigm B: Dynamic or pre-existing fractures have a typical GR distribution with fat tails, i.e. large events are statistically relevant. However, fractures
are constrained in size to fit within the stimulated area (blue area in the left panel), i.e. there exists a maximum fracture area that increases over time
in proportion to the total volume injected. The effective seismogenic index Σ is magnitude dependent and evolves in time in a non-scaling relation
with M0. This can be interpreted as a lack of large earthquakes given Σ corrected at long times [?]. To be more precise, P(M0 > M0|V(t)) ≈

P(M0/M
∗
0 (V(t))). This characteristic size M

∗
0 (V) ∼ V

η
dominates the record statistics. Hence, the expected maximum momentM

max
0 ∼ V

η

(red lines in here). Large microseismic events in HF and EGS operations are better described within this paradigm [10].
In terms of the unified model: Paradigm B is compatible with the statistics of population II, which dominate at long injection times, specially at high stress
levels (low smax , e.g. orange line in here). The lack of large events at early times discussed by S. Shapiro et al. (2011) [10] is observed here.

Paradigm C: Particularly strong events related with fluid injections can occur in the vicinity of critically loaded tectonic settings (represented in the left panel
with a brown shadow). In such cases, earthquakes triggered by fluid injection are indistinguishable from tectonic earthquakes and can expand without any
constrain imposed by the size of the stimulated area. The probability of event nucleation is still proportional to the injected volume, following the same
arguments provided in [4]. Hence, the statistics are Gutenberg-Richter and determined by the tectonic setting [?]. Considering an unbounded power-law

distribution of moments, the expected maximum moment is again determined by record statistics in a stationary distribution: M
max
0 ∼ V

3
2b , where b

is the b-value of the tectonic setting (green dashed line here).
In terms of the unified model: Paradigm C is reproduced by partly or entirely pre-loading the reservoir to the critical point through shear-stress driving. The
results are shown in the green solid line here.
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1) OBSERVATIONAL PARADIGMS OF FLUID-INDUCED SEISMICITY

Natural and anthropogenic processes involving the injection or migration of fluids
within rock formations can induce earthquakes. Field observations led to the formula-
tion of three different paradigms relating seismic hazards and injected volume (V ) [1].
According to them fluid-induced earthquakes are either:

1) small and their number is proportional to V [2,3];

2) bounded by the affected area such that their size also scales with V [4];

3) indistinguishable from tectonic earthquakes [5].

All three paradigms naturally coexist in the present unified conceptual model account-
ing for stick-slip mechanics and non-homogeneous pore-pressure stimulation caused
by fluid injection in a prestressed region. The loading history and heterogeneity of
the host medium determine which of the three paradigms dominates. In non-tectonic
settings two populations of events triggered at different pore-pressure levels with dif-
ferent Gutenberg-Richter b-values are superposed. Stress-levels and V determine their
proportions. In active tectonic settings, fluid injection triggers tectonic earthquakes.

2) MICROMECHANICAL TOY MODEL
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1) Fluid flow: 2D-lattice of sites with local pp and links with
random permeability ν. Fluid front advances through the con-
nection at front i → j with higher pp,i−pp,j+νij . pp decays ex-
ponentially with distance from source. A minimum pressure
gradient pmin is imposed at max. distance from source: Tran-
sition form invasion percolation [6] (capillarity and/or brittle
poromechanics) to viscous flow.

2) Fracture: Mohr-Coulomb condition at site l:

τl >τs,l = τc,l + µl(p0,l − pp,l) = sl − pp

Resilience sl ∼ U(smin, smax). Spring-block model interactions
[7]. On slip τl → 0 and δτl = ατl to n.n..

Fractures initiate through a (wet) slip due to changes in pp(t)
and propagate through (dry) slip due to δτl.

5) EQUIVALENT HAZARD MODEL
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The toy model predicts three different kinds of events:

1) In non-tectonic settings, two populations coexist, depending on injected
volume (V ) and stress level (smax):

dN(M0) ∝ (xI(smax)PI(M0; smax) + xII(smax)PII(M0; smax)) dV

• pop. I: Stationary front of subcritical regions (pp < pc); Superposition
of power-law distributions with different cutoffs ⇒ steep power-law
(γ∆,I =

3
2b∆,I + 1 ≈ 2.6) of small events [2,3]:

PI(M0; γI,M0,c)dM0 =

(

M0

M0,c

)−γI γI − 1

M0,c
dM0

• pop. II: Critical regions close to injection (pp & pc) bounded by fluid
[4]; critical distribution of spring-blocks in 2D; (γ∆,II ≈ 1.27):

PII(M0; γII,M0,s,M0,c)dM0 =
M−γII

0 exp(−M0/M0,s)

∆1−γII

c Γ
(

1− γII,
M0,c

M0,s

) dM0

where: log10(M0,s) = Λ(smax) + η(smax) log10(V )

2) In a (SOC) critically loaded tectonic setting, events are triggered by pp
but unbounded in space [5]. All events belong to a single category:

• pop. III: Critical distribution of spring-block in 2D; (γ∆,II ≈ 1.27):

dN(M0) ∝ PIII(M0; smax)dV ; PIII(M0)dM0 =

(

M0

M0,c

)−γII γII − 1

M0,c
dM0
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3) SPATIOTEMPORAL PROFILES

Events are initiated by pp,l(t) either by (i) propagation of fluid
to new percolated regions (generates spatial clustering); or (ii)
global changes in pp (temporal clustering).
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6) HAZARD ASSESSMENT

In the case M0 ∼ ∆. By fitting {x̂II, Λ̂, η̂}, smax = 2.2.
Cumulative number larger than ∆, as in [3,4]:
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• proportionality: Mmax
0 ∼ V (exponents in [8]).

• pop. I dominates (small events, models [2,3]).

• pop. II dominates (bounded events, model [4]).

• high stress level (smax = 1.4), always pop. II.

• low stress level (smax = 2.2), pop. I → pop. II.

• Tectonic setting (pop III) (model [5]).

4) MAGNITUDES

Three different (related) event magnitudes:

• A: Area of fracture or n. of sites slipped;

• S: Total n. slips or size;

• Stress released ∆ :=
∑

i∈{slips} τs,i. (assumed ∆ ∝ M0)
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Transition by finite size effects: A ≈ S(∼ ∆) → A ∝ S2/3.
Power-law distribution of ∆ (with exponent γ∆ = b∆ + 1).
High variability (as rep. in [3]): high values (γ∆,I ≈ 2.6) for
low stress levels; low values (γ∆,II ≈ 1.27) for high stress lev-
els, due to the co-existence of critical and sub-critical events.


