

Characteristics of Mechanical Response and Acoustic Emission During Granular Shearing

○ Yao JIANG¹, Gonghui WANG²

1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (yjiang@imde.ac.cn)

2. Research Center on Landslides, Disaster Prevention Research Institute, Kyoto University

Background

•0000000

Discussion and Summary

Friction Motions in Geo-science

Velocity Dependence of Friction

Summarized from Singh, 1960; Banerjee, 1968; Robbins and Thompson, 1991; Yoshizawa, et al., 1993; Wu-Bavouzet, et al., 2007.

Experimental results

Discussion and Summary

Possible Mechanism

Asperity model (Rock-on-rock surfaces)

solidlike

liquidlike

solidlike

(Cain, et al., 2001)

0000

Background

00000000

Discussion and Summary

Correlations of Frictional Instability

Experimental results Background 00000000 0000

Discussion and Summary 000000

Acoustic Fluidization and Instability

Shearing itself generates acoustic vibration and sample dilatation.

(a) Low shear rate

(b) High shear rate

(van der Elst et al., 2012)

Discussion and Summary

Motivations

- Whether the *particle sizes* have significant influence on the granular instability?
- Whether the *characteristics of AE* are dependent on particle sizes?
- Whether the generated AEs are *precursors* to failure or resultant phenomena?

• Sampling frequency: 1MHz;

Experimental results

0000

Discussion and Summary

Frictional Instabilities

Particle size and shear velocity dependence of frictional instability

A strong correlation between acoustic emissions and frictional instabilities.

Experimental results

Discussion and Summary

Experimental results

Discussion and Summary

AE Characteristics

0000

Particle size: 4.7~5.3mm

Shear velocity: 0.005mm/s

Discussion and Summary

Background

0000

•00000

Occurrence Rate of AE Events

Experimental results

0000

Discussion and Summary

Frequency Analysis

Method: Discrete Wavelet Transform

Purpose: To analyze the frequency characteristics in time-domain for acoustic signals.

BackgroundExperimental resultsDiscussion and Summary00000000000000000000

AE and Shear Resistance Drop

AE priors to the failure of granular materials

Background Experimental results Discussion and Summary 00000000 0000 0000 Time-frequency Spectra of AEs

BackgroundExperimental resultsDiscussion and SummaryOOOOOOOOOOOOOOOOOO

Key Findings and Future Work

□ Large particle size shows more catastrophic instability.

- AEs are in kHz-range characteristics and occurrence rate increases with increase of shear rate for granular materials.
- Resistance release events are associated with AE generation, which precedes failures.

Thank you for your attention!