# Wave groups and spectral shape in ice



#### **Johannes Gemmrich**

University of Victoria Victoria, BC, Canada gemmrich@uvic.ca

#### Todd Mudge

ASL Environmental Sciences Victoria, BC, Canada

#### **Jim Thomson**

Applied Physics Laboratory Seattle, WA, USA

# Enhanced group structure of waves in ice -Linear or nonlinear process?

#### <u>Motivation:</u> Previous case study in pancake ice (Thomson et al 2019, JGR):

High frequency wave attenuation

 $\rightarrow$  narrow band

Linear superposition

→ Strong group structure

Here: new study, 4 year record, including thick first year ice

# **Definitions: Wave parameters**



Spectral moments  $m_n = \int \omega^n S(\omega) d\omega$ 

Dominant frequency

Significant wave height

Spectral bandwidth

$$\omega_p = \frac{\int \omega S(\omega)^4 d\omega}{\int S(\omega)^4 d\omega}$$
$$\nu = \left(\frac{m_0 m_2}{m_1^2} - 1\right)^{\frac{1}{2}}$$

 $\varepsilon = k_p H_s/2$ 

 $H_{\rm s} = 4 \sqrt{m_0}$ 

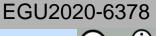
| Group factor |                       |
|--------------|-----------------------|
| GF =         | $\sigma_{SWH}$        |
|              | $\langle SWH \rangle$ |

Smoothed Instantaneous Wave Energy History  $SWH = Q * \eta^2$ (wave envelope) (Q: Bartlett window length  $2T_p$ )

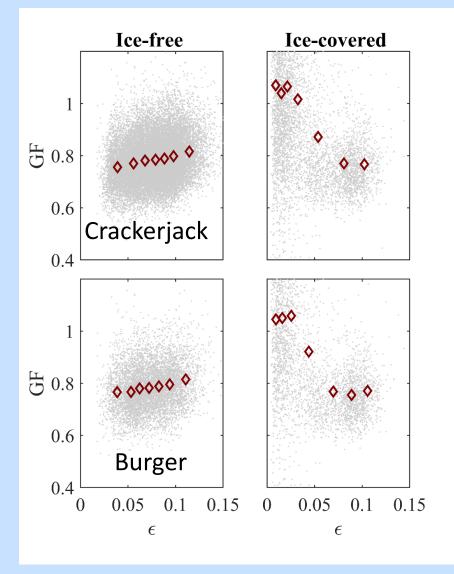
### **Observations: surface elevation (various ice conditions)**



Observations 2010 – 2015 2 sites: Burger and Crackerjack, ~47m depth • Range to surface at 0.5 Hz (some 1 Hz),


→ 1d 'surface elevation' time series (inverted echosounder range)








## **Group factor – wave steepness**





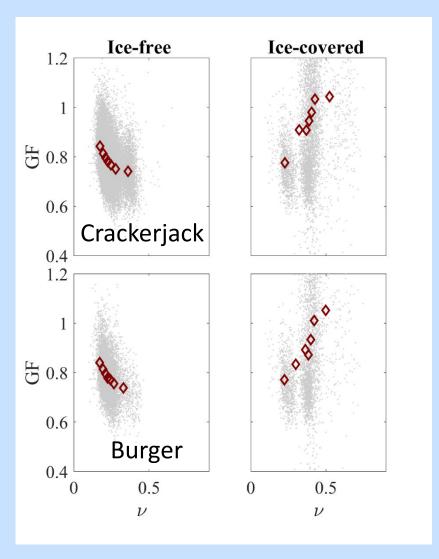


Ice free:

- Lower GF
- Steeper waves
   → more pronounced groups

#### Ice covered:

- Higher GF
- Steeper waves
   → less pronounced groups


### Similar steepness in ice and ice-free

(despite lower Hs)
 → Attenuation of longer waves (?)
 Or change in dispersion relation (?)

(Note: in pancake ice: GF highest in ice, decreasing with steepness)

# **Group factor – bandwidth**

EGU2020-6378



#### Ice free:

- Narrow-banded waves

   more pronounced groups
   lce covered:
- Broad-banded waves
   → more pronounced groups

### Similar bandwidth in ice or ice-free

→ Why?
 (would expect high-frequency attenuation in ice
 → linear: narrow band)

(Note: in pancake ice: GF highest in ice, decreasing with bandwidth)

# **Group factor – bandwidth: nonlinear process**

ISSN 0001-4370, Oceanology, 2007, Vol. 47, No. 3, pp. 334–343. © Pleiades Publishing, Inc., 2007. Original Russian Text © V.G. Polnikov, I.V. Lavrenov, 2007, published in Okeanologiya, 2007, Vol. 47, No. 3, pp. 363–373.

MARINE

#### Calculation of the Nonlinear Energy Transfer through the Wave Spectrum at the Sea Surface Covered with Broken Ice

V. G. Polnikov<sup>a</sup> and I. V. Lavrenov<sup>b</sup>

<sup>a</sup> Obukhov Institute of Atmospheric Physics, Moscow, Russia <sup>b</sup> Arctic and Antarctic Research Institute, Russian Academy of Sciences, St. Petersburg, Russia

Note: Spectral bandwidth defined omni-directional, but group generation effective in unidirectional waves

Ice reduces nonlinear 4-wave transfer but enhanced transfer to high frequencies (compensates for high frequency attenuation:  $\rightarrow n_{ice} \sim n_{water}$ )

- $\rightarrow$  High frequency spreads to lateral directions
- $\rightarrow$  Waves in dominant direction more "narrow-banded"
- $\rightarrow$  Increase in group factor

Process less pronounced in narrow band wave field Broad-banded waves  $\rightarrow$  high frequency lateral spread  $\rightarrow$  more pronounced groups EGU2020-6378







### Wave groups in ice: linear or nonlinear?

Thin ice:Group factor decreasing with bandwidthlinearThick ice:Group factor increasing with bandwidthnonlinear

Ice enhances nonlinear 4-wave transfer to high frequencies  $\rightarrow$  Lateral spread  $\rightarrow$  more groups in dominant direction

Spectral parameter  $\leftarrow \rightarrow$  groupiness:

Opposite behaviour in thick ice vs. open water

<sup>a)</sup> Thomson et al, 2019
 <sup>b)</sup> This study. Consistent with nonlinear mechanism suggested in Collins et al, 2015

### References:



Collins, C.O., W.E. Rogers, A. Marchenko, and A. V. Babanin, 2015: *'In situ measurements of an energetic wave event in the Arctic marginal ice zone'.* Geophys. Res. Lett.,42, 1863–1870

Polnikov, V.G., and I.V. Lavrenov, 2007: '*Calculation of the nonlinear energy transfer through the wave spectrum at the sea surface covered with broken ice'*. Oceanology, 47, 334–343

Thomson, J., J. Gemmrich, W. E. Rogers, C. O. Collins, and F. Ardhuin, 2019: 'Wave groups observed in pancake sea ice'. J. Geophys. Res. 124, 7400-7411

#### Acknowledgments:

