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Introduction

* Area under a sedimentary cover / regolith

* NS major geological boundary observable in the
potential field geophysical data

* 122 MT sites selected (blue points), spaced ~ 2km
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MT Data  Apparent resistivities and Phase Tensor
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Clear EW division,
related to the NS
running fault.

Resistive
basement clearly
observable in the
western part of
the survey.

1D behaviour
suggested by
phase tensor
ellipses for T <
0.1s (skew angle
beta < 3 degrees;
Caldwell et. al.,
2004).

Queensland
Government



1D probabilistic
Inversions

1D trans-dimensional Markov chain
Monte Carlo sampler, designed to
account for non-1D effects present in
the data (Seillé and Visser, 2020).

- In presence of 2D/3D effects the
data uncertainty is increased to
compensate for the wrong
assumption on the 1D-ness of the
data.

- 1D MT probabilistic inversions
results are represented as
ensembles of 1D models for each
site, each of them satisfying the
data within its uncertainty.
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1D ensemble analysis and fusion , sasement

Basement
, |:EleIerior M , fiIterEc_i_poiterior
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The distribution of resistivity of all the 1D F
model ensembles is analysed to define prior *
knowledge on lithologies’ resistivities and | B
their probable sequence ”'“

06

The 1D ensembles are filtered to keep the
most probable 1D models given the previous
assumption we derived on the lithologies,
using a Bayesian Spatial Ensemble Fusion
algorithm (Visser, 2019; Visser et. al.,

- https://meetingorganizer.copernicus.org/E
GU2020/EGU2020-4388.html)
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In that example most of the models of the
ensemble that present a resistive layer around
400m are filtered out.

Queensland
Government

@

1500 1500

6

0 2 4 0 2 4
log10 resistivity Ohm.m log10 resistivity Ohm.m


https://meetingorganizer.copernicus.org/EGU2020/EGU2020-4388.html

€ OO

BY NC

Basement imaging: Preliminary results

Each sounding provide an independent distribution of depths at which the basement is estimated. Some soundings
have no or too few estimates to be included in the interpolation (red points).

Interpolation between these estimates is performed to produce a surface and associated uncertainty.

basement elevation (m.a.s.l.)
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> The transition between the shallow basement on the West and the deep basement on the East is likely ~ Svenner
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to be controlled by a sharp subvertical contact. Interpolation using constraints from fault location to
obtain a more geologically realistic result is ongoing.
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Conclusions

* Preliminary results show that the workflow we presented has the capability to provide
significant information in terms of structures and uncertainty, even in a 3D context.

* The basement structure on the western part of the survey is relatively well constrained by the
data. On the eastern part the basement appears to be located at depths > 1000m.

* Ongoing work:
* Include petrophysical and geological information during the ensemble filtering.
* Include AEM data to better define the shallower part of the basement between the MT sites.

* Assimilation of different sources of information about the depth to basement and knowledge about
geological structures (faults) during the interpolation of the estimates (Visser and Markov, 2019), to
recover a more geologically realistic depth to basement surface.

» Comparison with existing 2D/3D results to assess the relative merits of different approaches.

Parallel ongoing research:
* Results to be used in conjunction with 2D/3D deterministic MT inversions (structurally constrained
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inversions, Seillé and Visser, 2019). Govemment
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