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• The ability to handle complex geometries is often 
mentioned as one of FEM:s strong points 

• The capability is however limited by: 

Expensive remeshing 

Sensitivity to low quality (=distorted) elements 

• Therefore, unfitted methods such as XFEM and 
CutFEM are being developed

Fitted FEM Unfitted FEM



CutFEM

Th,0

⌦

�
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• T0,h be a family of meshes on ⌦0 with mesh parameter h 2 (0, h0]

• Th = {T 2 T0,h : ⌦ \ T 6= ;}
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that intersect the boundary �

• Vh,0 a finite element space on Th,0 and Vh = Vh,0|Th
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• Boundary conditions imposed using Nitsches method 
• Integration done only over domain 
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Small element contributions needs special care to avoid bad 
condition numbers! 
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• Boundary conditions imposed using Nitsches method 
• Integration done only over domain  
• “Ghost penalty” terms to handle small cut element 
• No loss in convergence! 

p-Stokes equations

�r · S(Du) +rp = f in ⌦,

r · u = 0 in ⌦.
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Test Problem: The Arolla Glacier 

Haut Glacier d’Arolla



CutFEM+full Stokes on Arolla

Velocity Magnitude



Slip conditions

Subglacial lake

Slip conditions 
inspired by: A Nitsche 

cut finite element 
method for the Oseen 
problem with general 

Navier boundary 
conditions, M.Winter, 
B.Schott, A.Massing, 

W.A.Wall, CMAME 
(2018)



Free surface movement using Level-Set

Level-Set Reinitialisation:  
A local projection reinitialization procedure or the level set equation on unstructured grids 
(Parolini, Burman, 2007).  Left and right corner of glacier gets rounded off… 


