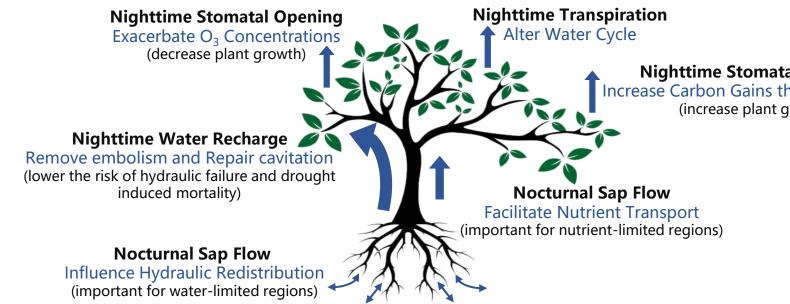


How to differentiate nighttime transpiration and water recharge in nocturnal sap flow?

Zuosinan Chen (zuosinan.chen@gmail.com), Zhiqiang Zhang, and Lixin Chen | College of Soil and Water Conservation, Beijing Forestry University, Beijing, China


© Authors. All rights reserved

INTRODUCTION

Backgrounds

- Nocturnal sap flow (Q_n) accounts for an average of 12% of the total water uptake across a range of tree species and forest ecosystems and can affect not only forest carbon and water budgets but also their responses to water and nutrient stress.
- Q_n consists of two ecophysiological and ecohydrological significant components: nighttime transpiration (E_n) and nighttime water recharge (R_n) .

Ecophysiological and Ecohydrological Functions of Nocturnal Sap Flow

• Q_n is mainly considered as R_n when stomata tend to be closed, and E_n is thought to be promoted by nighttime vapor pressure deficit (VPD_n) . Accordingly, a VPD_n based method has been developed to estimate E_n , which is normally quantified through the discretely measured nighttime stomatal conductance, from the widely and continuously measured sap flow.

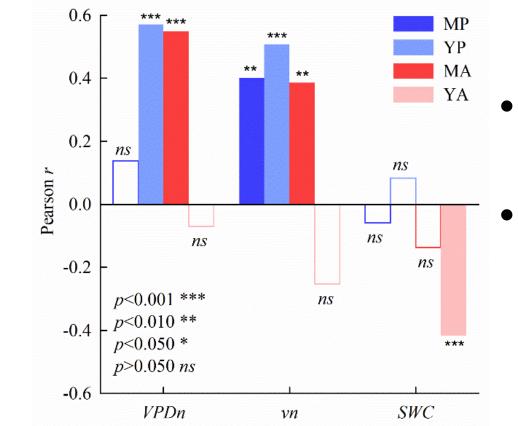
However, the environmental control of Q_n was not fully understood.

OBJECTIVES

- Testify whether Q_n is positively responded to VPD_n
- Clarify how environmental factors concurrently influence Q_n
 - Explore how to differentiate E_n and R_n

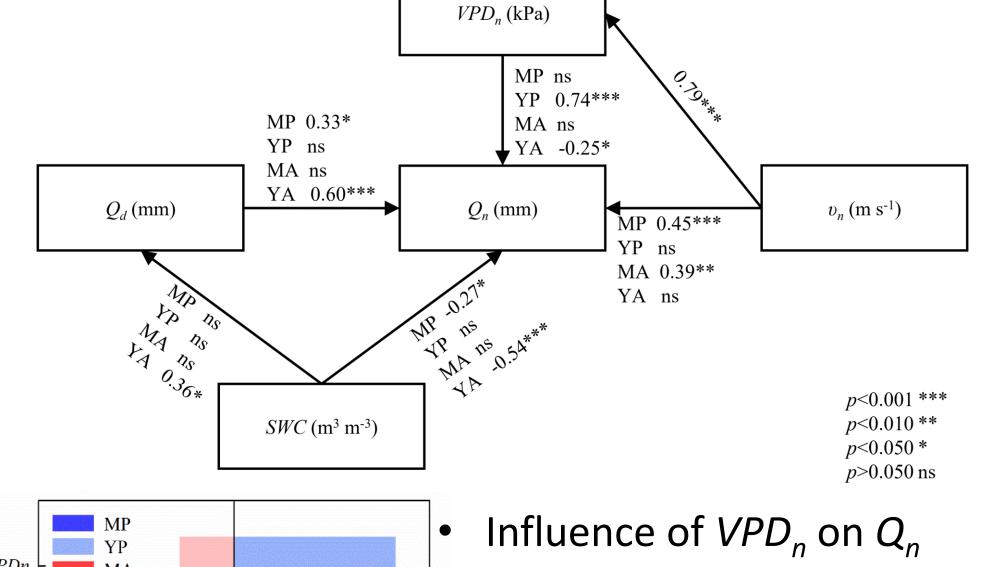
METHODS

- In a semi-arid mountainous area of northern China
- Measured growing season sap flow of a 45-year-old *Pinus* tabuliformis (MP), a 10-year-old P. tabuliformis (YP), a 34-yearold Acer truncatum (MA), and a 6-year-old A. truncatum stand by Granier-type thermal dissipation sensors

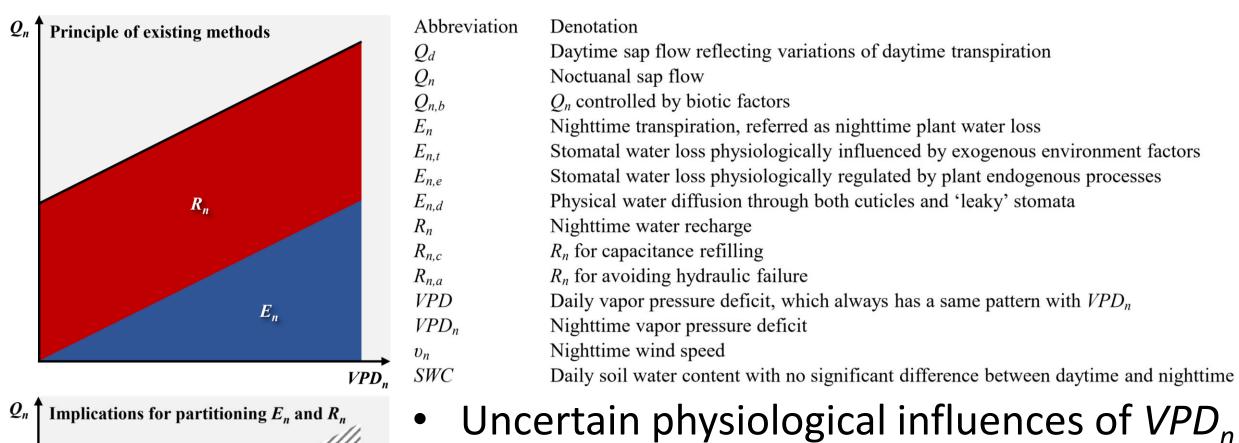

RESULTS

1. Daily and diurnal variations

of nocturnal sap flow and


environmental factors

2. Correlations between nocturnal sap flow and environmental factors


- Q_n was not always significantly correlated to VPD_n
- Q_n could also be significantly correlated to wind speed (v_n) and soil water content (SWC)

3. Effect of concurrently changing environmental factors on nocturnal sap flow

- impacts on Q_n
 - conditioned by soil moisture Wind speed had considerable
 - Both increased and decreased soil moisture was able to promote Q_n through two distinct ways
- Total effect of concurrent environmental controls was limited

IMPLICATIONS

- on nighttime stomatal water loss Overlooked nighttime water loss induced by wind
 - Region-specific nighttime water recharge responses to VPD
 - Importance of biotic controls on Q_n

CONCLUSIONS

- Soil moisture conditioned the influence of nighttime vapor pressure deficit on nocturnal sap flow in semi-arid regions.
- Concurrently changing environmental factors (i.e., VPD_n , υ_n , and SWC) affected nocturnal sap flow through various direct and indirect ways, and their total effect was limited.
 - Nocturnal sap flow partitioning method requires further improvements.

ACKNOWLEDGEMENTS

This research was supported by the National Natural Science Foundation of China [grant number 31872711]

REFERENCES

Chen, Z., Zhang, Z., Sun, G., Chen, L., Xu, H., Chen, S., 2020. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology 284, 107904. doi: 10.1016/j.agrformet.2020.107904