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Installed Wind Capacity growing strongly
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I O&M costs on the rise

North American Wind CAPEX Vs. OPEX Outlook 2018-2030
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Rising demands for reliable and cost effective operation

Source: IHS Markit



Reliability-critical Subassemblies in Wind Turbines

Failures per turbine per year
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Highest Annual Failure Rates

» Electrical system ~ 0.5/a
* Sensors ~ 0.5/a

* Pitch system ~ 0.3/a

« Control system ~ 0.3/a

* Yaw system ~ 0.2/a



Accelerometer Fluid Property

Gearbox Monitoring Gearbox Oil
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> 100 data points every 10 minutes

Commercial on-shore turbine in Western Europe

All data has been anonymised

Source: TE Connectivity



Power reference model
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Power reference model

ESTIMATION ACCURACIES FOR P ~ Vyno + Gwio + Tar

Algorithm RMSE in kW R’
Random Forest 67.1 0.997
Gradient Boosting 68.1 0.997
BRNN 72.8 0.996
SVM 75.5 0.996
kNN 185.5 0.977
GAM 360.4 0.913
GAM LOESS 136.8 0.987



Power reference model P~ vyina + ctwind + Tai
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I Energy Residuals

Energy residual [MWAh]
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I Energy Residuals

Energy residual [MWAh]
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Power Loss event
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One week shown

10.3 MWh lost within 24
hours

Decline in power
generation despite
constant wind speed

Underperformance lasted
for about 15 hours



Power Loss event
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Zoom in to 2 days

Underperformance
despite relatively constant
wind speed around 9 m/s

Coinciding with unusually
large blade angles at
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Coinciding with sudden
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I Power Loss event

Actual and Expected Power
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Power Loss event
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Pitch cylinders adjust the rotor blades
in wind power turbines.

Source: Trelleborg AB



Performance Fault Detection in Wind Turbines by Dynamic Reference State Estimation

Angela Meyer'” and Bernhard® Brodbeck

!'School of Engineering, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland
2WinJi AG, Am Wasser 55, 8049 Zurich

*Corresponding author (angela.meyer@zhaw.ch)

Abstract— The operation and maintenance costs of wind parks
make up a major fraction of a park’s overall lifetime costs. They
also include opportunity costs of lost revenue from avoidable
power generation underperformance. We present a machine-
learning based decision support method that minimizes these
opportunity costs. By analyzing the stream of telemetry sensor
data from the turbine operation, estimating highly accurate power
reference relations and benchmarking, we can detect
performance-related operational faults in a turbine- and site-
specific manner. The most accurate power reference model is
selected based on a combinations of machine learning algorithms
and regressor sets. Operating personal can be alerted if a normal
operating state boundary is exceeded. We demonstrate the
performance fault detection method in a case study for a
commercial grid-connected onshore wind turbine. Diagnosing a
detected underperformance event, we find that the observed
power generation deficiencies coincide with rotor blade
misalignment related to low hydraulic pressure of the turbine’s
blade actuators.

Index Terms— Fault detection and diagnosis, Gradient
boosting, Performance optimization, Power modelling, Wind
turbine

[. INTRODUCTION

HE globally installed wind power capacity reached 591
GW at the end of 2018 and continued growth is expected
by at least 55 GW annually until 2023 [1]. The operation and
maintenance (O&M) costs of commercial wind turbines
constitute a large fraction of the overall lifecycle costs. They

to be monitored. A variety of condition monitoring approaches
have been proposed for wind turbines, including oil analysis,
vibration, acoustics and strain monitoring [4]. More recently
several multivariate data mining approaches to condition
monitoring have been proposed for detecting performance-
related faults and quantifying underperformance in the power
generation of wind parks. These approaches make use of
turbine telemetry data comprising sensor-measured and control
variables for estimating power curve models in a parametric or
non-parametric manner [5]. Several parametric methods have
been proposed, e.g. [6]-[8]. Among the parametric approaches,
for instance [6] proposed a monitoring method which calculates
a power curve by spline interpolation of mean power values per
wind speed bin and then learns upper and lower limits to the
power curve and issues an alarm if the limits are exceeded.
Being based on discrete bins and parametric interpolation, this
method may be prone to provide less accurate estimates than
highly flexible machine leaming regression models. Moreover,
it issues alarms based on single 10-minute average outlier
values, which may result in a large number of alarms even in
case of brief transient deviations. An underperformance
detection in the power generation was proposed in [7] based on
power curve modelling with stepwise linear models and
Weibull cumulative distribution functions. It is found that such
parametric approaches can be limited in their flexibility to
capture power relations and to reflect the characteristics of
individual turbines and sites.

Among the non-parametric approaches, several regression,
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