Ion Scale Flux Rope Observed at the Trailing Edge of the Hot Flow Anomaly

Shi-Chen Bai^{1,2}, Quanqi Shi¹, Terry Z. Liu^{3,4,5}, Hui Zhang⁵, Chao Yue^{2,6}, Wei-Jie Sun⁷, Anmin Tian¹, Alexander W. Degeling¹, Jacob Bortnik², I. Jonathan Rae⁸, Mengmeng Wang¹

¹Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, School of Space Science and Physics, Shandong University, Weihai, China.

²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, California, CA, USA. ³University Corporation for Atmospheric Research, Boulder, CO, USA

⁴Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California

⁵Geophysical Institute, University of Alaska Fairbanks, Alaska, USA

⁶Institute of Space Physics and Applied Technology, Peking University, Beijing, China

⁷Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA ⁸Mullard Space Science Laboratory, Space and Climate Physics, University College London, Dorking, UK

Email:baishichen7@gmail.com, sqq@sdu.edu.cn

Introduction

Recent works on bow shock reconnection

- Wang et al., (2018) observed both electron and ion
 reconnection jets upstream of quasi-parallel shock
 which is related to the reflected solar wind ion beams.
- Gingell et al., (2019) observed electron-mode reconnection upstream from the quasipenperdicular shock, which is probably related to the tubulance reconnection excited by Weibel instability.
- Harmin et al., (2019) observed the externally driven reconnection in the bow shock ramp region for the first time.

Online Display, EGU 2020

[*Wang et al.*, 2018]

Overview of the Hot flow anomaly

山东大学空间科学研究院

Institute Of Space Sciences Shandong University

- The HFA observed in the ion foreshock region in the Quasi-parallel shock (θ_{Bn}=41°) and triggered by the tangential discontinuity.
- No flux rope signiture observed in the solar wind → not generated in the solar wind.

Overview of the Hot flow anomaly

山东大学空间科学研究院 Institute Of Space Sciences Shandong University

Timing analysis

Leading edge of the flux rope 113.5 ± 5.9 x[-0.84, -0.32, -0.43] km/s Trailing edge of the flux rope 91.93 ± 3.6 x[-0.90, -0.29 -0.31] km/s GSM

This flux rope is expanding and propagating with the HFA toward the bow shock \rightarrow not generated in the magnetosheath and propagate to the HFA.

Ion scale flux rope

White solid line predicts the deceleration result from the static electric field caused by charge

seperation of solar wind particle in +N direction and matches with the observation very well.

Online Display, EGU 2020

Force analysis inside the flux rope

nstitute Of Space Sciences Shandong University

magnetic pressure gradient **∇**•Pe V.Pi \mathbf{B}^2 \mathbf{B}^2 $\rho \left(\frac{\partial}{\partial t} + \vec{\mathbf{V}} \cdot \nabla \right) \vec{\mathbf{V}} = -\nabla$ -(īb́ · ▽)īb́ - $\nabla \cdot \mathbf{\ddot{P}}$ + magnetic tension force

The magnetic pressure gradient force changes directions in M direction, suggesting that the satellite passes through the flux rope center.

The magnetic pressure gradient force determines the expansion of the flux rope in N direction.

Summary

- 1. An ion scale flux rope with 6.1-7.5 ion inertial length is observed at the trailing edge of a hot flow anomaly.
- 2. Solar wind ions were decelerated inside the flux rope and the kinetic energy of solar wind ions was likely converted to the magnetic energy.
- 3. The flux rope is close to a one-dimensional structure and expands due to the strong magnetic pressure gradient force.

Bai, S.- C., Shi, Q., Liu, T. Z., Zhang, H., Yue, C., Sun, W.- J., et al. (2020). Ion- scale flux rope observed inside a hot flow anomaly. Geophysical Research Letters, 47, https://doi.org/10.1029/2019GL085933 https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085933

Thanks

