Seasonal variation of Mercury's exosphere deduced from MESSENGER data and simulation study

*Y. Suzuki(1), K. Yoshioka(2), G. Murakami(3) and I. Yoshikawa(2)

(1) Graduate School of Science, University of Tokyo
 (2) Graduate School of Frontier Sciences, University of Tokyo
 (3) JAXA/ISAS

Mercury's atmosphere

• Collision-less atmosphere (~10⁻¹⁵Pa)

= Exosphere directly connects to the surface.

- H, He are supplied by solar wind, others are ejected from the surface.
- Drastically varies depending on TAA due to high eccentricity (0.21)
- → direct effect of space environment on the bodies
 → environment of general airless bodies

	Major Species	Column Density (×10 ⁶ /cm ²)
	Na	~200,000
	Mg	~100,000
	0	<40,000
	Н	~5,000
	K	~1,000
5	Ca	<1,000
	Al	~15

"Mercury Fact Sheet" by NASA.

Observations by MESSENGER

- difference in the atmospheric structure depending on the species

Purpose of this study

Understanding the response of airless bodies to the space environments

This study aims to understand the cause of the seasonal variability of Mercury's neutral Na exosphere

- Na is so bright and easy to be observed that its behavior is understood best

Desorption processes of Na from the surface

• <u>Thermal Desorption</u> (**TD**)

Enhanced around perihelion & sub-solar point

• <u>Photo Stimulated Desorption</u> (PSD)

Enhanced around perihelion & sub-solar point

• <u>Solar Wind sputtering</u> (SWS)

Enhanced around perihelion & mid- or high-latitude region

• <u>Micro-meteoroid Impact Vaporization</u> (MIV)

Enhanced on leading hemisphere & around ecliptic plane

Previous research – theoretical model

- Estimation of seasonal variation of ejection rate by each process using numerical simulation
 - \rightarrow Ejection rate is not always minimum around aphelion

- Sputtering region is fixed at mid-latitude region
- Uniform MIV rate
- More precise assumption of
 Na supply to the surface is necessary
- Few studies have focused on fine spatial structure reflecting the observations by MESSENGER

Cassidy et al., 2015, Icarus

7

Previous research – observations (vertical distribution)

- The initial velocity distribution was estimated using the vertical profile of the density observed by MASCS
 - \rightarrow Na ejected by **PSD** is dominant

- limited area where the major desorption process can be estimated
- still unknown major desorption process of high energy Na

Previous research – observations (seasonal variation)

- Seasonal variation of Na emission at 300km above LT12 (MESSENGER / MASCS)
 - \rightarrow unexpected maximum around TAA180deg

Three hypothesis (Cassidy et al., 2015, *Icarus* & Cassidy et al., 2016, *GRL*.)

- supply of Na-undepleted surface from nightside to dayside by rotation
- expansion of exosphere of dayside due to weakening of solar radiation pressure
- accumulation of Na on "cold-pole longitude"

Cassidy et al., 2015, Icarus

Cold-pole longitude (Cassidy et al., 2016, GRL.)

- Na column density deduced from MESSENGER/MASCS data reaches a maximum around <u>a certain longitude</u> in all seasons "cold-pole longitude"
- Tendency to re-impact on cold-pole longitude around perihelion?
 - cold-pole longitude stays dawn/dusk region for long time
 - Na on this region is not desorbed owing to low temperature

Calculation model

Initial conditions

 all the Na is distributed uniformly on the surface

Equation of motion of atoms in the exosphere

 $\frac{\mathrm{d}^2 \boldsymbol{r}_0}{\mathrm{d}t^2} = \frac{\mathrm{G}M_{\mathrm{Sun}}}{r_0^3} \boldsymbol{r}_0 + \frac{\mathrm{G}M_{\mathrm{Mercury}}}{r_1^3} \boldsymbol{r}_1 + \boldsymbol{b}$ $\boldsymbol{r}_0: \text{ position vector of atoms from the Sun}$

 r_1 : position vector of atoms from Mercury b: solar radiation acceleration

> Life time for photo-dissociation: $\tau \sim 1.9 \times 10^5$ sec @1au

Ejection rate to the exosphere

Thermal Desorption (TD)

$$R_{\text{TD}} = \left[1 - \left\{1 - \exp\left(-\frac{U}{k_{\text{B}}T_{s}}\right)\right\}^{\nu\Delta t}\right]\sigma_{\text{Na}}$$

Photo Stimulated Desorption (PSD) $R_{PSD} = F_{ph(>5eV)} Q_{PSD} \cos Z \sigma_{Na}$

Solar Wind Sputtering (SWS) $R_{SWS} = F_{SW} Y_{SWS} f_{Na}$

 $\begin{aligned} & \text{Micro-meteoroid impact} \\ & \text{vaporization (MIV)} \\ & R_{\text{MIV}} = F_{meteo} \overline{M_{\text{vapor}}} f_{\text{Na}} \end{aligned}$

Results of calculation

11

Comparison between observations and model

Ejection of Ca by CDS impact

- Comet Dust Streams (CDS)
 = accumulation of comets' ejecta in orbit
- The peak of Ca ejection rate at TAA=25deg is likely to be due to CDS
- Short-term and local ejection is expected

Killen and Hahn, 2015, Icarus

Christou et al., 2015, GRL.

Assumption of ejection rate by CDS (my model)

• Ejection rate is assumed by Gaussian distribution around aphelion and the sub-solar point

$$R_{\text{CDS}} = R_{\text{CDS}}^{(0)} \exp\left\{-\frac{(\text{TAA} - 180\text{deg})^2}{2\sigma_{\text{TAA}}^2}\right\} \exp\left[-\frac{1}{2}\left\{\frac{(\text{LT} - 12\text{hr})^2}{\sigma_{\text{LT}}^2} + \frac{|\text{at}^2|}{\sigma_{\text{lat}}^2}\right\}\right]$$

Estimation of ejection rate by CDS

 $\frac{\text{Maximum around}}{\text{aphelion can be}}$ $\frac{\text{reproduced}}{\text{assuming}}$ $R_{\text{CDS}}^{(0)} \sim 10^{22} \text{Na/km}^2/\text{sec}$

Impact of comet dust streams less than 10⁸kg can explain the maximum

Possible scenario

Na column density observed by MASCS

Summary & Future work

- Na radiation above LT12 surprisingly turned out to have a maximum around aphelion by MESSENGER/MASCS
 - supply of Na-undepleted surface by rotation
 - expansion of exosphere & cold-pole
 - local and short-term ejection by comet dust streams?

- Considering the supply of Na by CDS
- Comparing model with data at all LTs (not only LT06, LT12 and LT18)

Prediction of observations by MIO/MSASI

Murakami et al., *in prep*.