

An Advanced Formulation of Kalman Filter Time Series Reference Frame Realization for Geophysical Applications

Xiaoping Wu, Bruce J. Haines, Michael B. Heflin, and Felix W. Landerer

Jet Propulsion Laboratory, California Institute of Technology, USA

EGU2020 Session G2.2

KALREF – Kalman Filter/Smoother Time Series Realization of Terrestrial Reference Frame

- Unify and bridge SLR/VLBI/GNSS/ DORIS time series in a frame with origin at nearly instantaneous CM from SLR
- VLBI/GNSS/DORIS series are tied to SLR CM through local ties and comotion constraints on co-located stations
- Time-variable station coordinates and covariance matrices consistent with time-variable gravity
- Works fine for positioning purposes

Time-Correlation and Geophysical Displacement Covariance Matrices

- The unique nature of KALREF results in highly correlated coordinate errors over time. e.g. local tie errors are constant over time
- But Kalman filter cannot keep track of correlations over time
- Ignoring time correlations can result in erroneous covariance matrices for displacement observables in many geophysical applications.
- For example, in KALREF, co-located stations should have the same displacement and uncertainty. But derived from station coordinate covariance matrices through either stacking or differencing without time correlations, the co-located stations have very different displacement covariance matrices.
- Used in subsequent geophysical inversions, these would result in ambiguous and erroneous results. For instance, different co-located stations would result in different geocenter motion results by more than a millimeter.
- Robust geophysical use requires a more advanced KALREF formulation with displacements as explicit state parameters for accurate evaluation of their covariance matrices

Advanced Kalman Filter State Parameter Formulation

- Now the state parameter vector includes D_k^{ij} as explicit parameter for station *i*, coordinate axis *j*, and week *k*.
- X_{0k}^{ij} is a constant over time except when there is a position offset
- ε_{Dk}^{ij} is a white noise
- $X_k = X_0 + D_k$ is the total coordinates
- This enabes Kalman filter and smoother to accurately assess the covariance matrices of D_k^{ij}

Co-located Australian Station Coordinate and Displacement Uncertainties

- The coordinate uncertainties differ.
- but nearly the same displacement uncertainty from the advanced formulation.
- KALREF time series are longer (1980-2009) than the shown time window with coordinate uncertainties bottoming in the middle of the data stream.

Unified Inversion for Non-Secular Geocenter Motion

Unified inversion of displacements WRT CM + GRACE for geocenter motion

Wu et al., Geo. J. Int., 2017

- Surface Displacements against CM have both (strong) translational and (weak) deformational signatures of n=1 mass variations
- Desire uniform global station coverage
- GRACE+FO data further improve access to CF
- Displacement errors are also correlated in time thus Helmert variance component calibration needed for error propagation
- Plan to use geocentric GNSS data with GRACE+FO in the future with rapid progress in GNSS geocenter sensitivity.

146 KALREF Sites

CM-CN (JTRF2008-146 sites) and Estimated CM-CF from Unified Inversion

Annual Geocenter Motion Estimates

Data	X _g		Yg		Zg		
	Amp mm	Phase day	Amp mm	Phase day	Amp mm	Phase day	Ref
SLR (Monthly)	3.2±0.4	33 ± 3	2.6±0.2	306 ± 2	4.3±0.3	31 ± 2	Cheng 2013 2002-2010
ILRS (Weekly)	3.0±0.2	55 ± 4	2.7±0.2	328 ± 4	5.4±0.4	23 ± 4	ILRS 2002-2009
GNSS GRACE tracking + Acc. data	1.1±	54 ±	2.8±	332 ±	3.6 ±	45 ±	Kuang 2019 2006-2010
GPS Deformation +OBP+GRACE	1.9±0.1	48 ± 5	2.9±0.1	325 ± 3	4.3±0.2	30 ± 3	Wu 2013 2002.3-2009.3
OBP + GRACE	2.3±0.1	52 ± 3	2.8±0.1	327 ± 2	2.9±0.2	69 ± 4	Sun 2016 2002.6-2014.5
Unified Inversion	1.3±0.1	50 ± 4	3.3±0.1	338 ± 2	2.9±0.2	27 ± 3	This study 2002.2-2009.0

Unified Inversion for

Longer Term Geocenter Motion Estimates

- JTRF2014 input data (Abbondanza et al., 2017)
- **Advanced KALREF formulation**
- **Results largely consistent with** global inversion of relative GPS + **GRACE+ECCO** but more precise
- Interannual variations rather than steady acceleration

3

2

1

0

-1

-2

-3

2002

2004

шШ

Toward Higher Precision and Low-Latency Geocenter Motion Determination

- KALREF-type Displacements have complex and heterogenous error structure
- TRF products have latencies of > 5 years
- Recent developments in JPL demonstrate GNSS's sensitivity to CM (*Haines et al., 2015, Kuang et al., 2019*)
- Orbit tracking with pointpositioning for larger-network displacements WRT GNSS's CM + GRACE+FO gravity for unified inversion with better homogeneity and latency

CM-Flinn CN from GNSS tracking to GRACE+ accelerometer data (*Kuang et al., 2019, J. Geod.*)

Summary

- For positioning purposes, the standard KALREF formulation in timevariable coordinates are fine.
- For geophysical investigations relying on displacements, an advanced KALREF formulation with displacements as explicit parameters is required.
- The advanced formulation results in accurate displacement covariance matrices to be used in unified inversion with GRACE data for non-linear geocenter motion.
- Wider and more even ground networks and GRACE gravity data reduce biases and enhance access to CF

See Wu et al., JGR., 2020.

• Plan to apply the unified approach to linear trend inversion and use improved geocentric GNSS data with GRACE to improve latency

© 2020 California Institute of Technology. Government sponsorship acknowledged.