

Upscaling riparian lowland buffer zone flow dynamics in the Danish nitrogen model

Saskia Noorduijn

Anker Højberg

GEUS

EGU 2020

Online Discussion Forum

FUTURE CROPPING

Tuesday 5 May 2020

Overall Objectives

- Determine the optimal method to identify and include spatial variability in *riparian lowland denitrification* in the Danish nitrogen model
 - GIS analysis
 - Drainage area and slope
 - Geological/Hydrogeological assessments
 - Aquifer geometry
 - Groundwater inflow (hydraulic pressure)
 - Soil types

>Needs to be consistent and transparent at the national scale!

Starting at the small scale

- Can we simulate the observed flow partitioning and water balance for a <u>selected riparian lowland</u> area?
 - In particular, surface flow pathways:
 - Surface runoff, exfiltration, Tile drain flow

... which provide **bypass** pathways for potential nitrate to enter surface water systems.

- What modifications to the current simulations are required to reproduce the observed responses?
 - e.g., model refinement, improved soil date and/or representation vegetation...

© Authors. All rights reserved

Transect showing the different flow pathways for water to reach the aquatic system

- Detailed data are available for 2 small riparian lowlands within Denmark.
- The Holtum and Fensholts catchments have been instrumented to help quantify their water and nitrate balances.
- This data can be used to verify whether it is possible to simulate the water balance behaviour observed at sites.

Fensholt Catchment

- The Fensholt catchment research focused on <u>4 transects</u> within the riparian lowland.
- The geomorphology and hydrology for each transect (and associated upland area) is different. (see table below)
- Different water balance partitioning was measured within the transects.

Characteristic	T31	T32	T33	T34
Riparian lowland slope (%)	3.0	9.0	2.5	6.5
Distance from hillslope drain outlet to stream (m)	90-140	35	150	80
Upland drain catchment area (AC) (ha)	3.9	7.6	13.7	6.9
Area of riparian lowland transect (AT) (ha)	1.15	0.113	1.17	0.477
Ratio of upland drain catchment area to riparian lowland transect area (R = AC/AT)	3.4	67	12	14
Tile drains present within riparian lowland	+	-	-	-

Petersen et al. (2020) Riparian lowlands in clay till landscapes Part I, WRR

National scale data

Can we simulate similar variability in the observed transect water balance, using:

- Nationally available data sets (climate, topography, land use, soil data) &
- **Danish Groundwater Resources model** (DK model: model covering all of Denmark)

Without additional calibration to the specific riparian lowland model!!!!

IF this is shown to be possible, additional riparian lowlands may be selected (for which we have no site specific data) for simulation with a *certain* amount of confidence in the simulated water balance.

National scale data

Initial simulations have focussed on the Fensholt Catchment

National scale data

- The model was built in MIKE-SHE, structured similar to the Danish Groundwater Model (DK model: currently run at a 500 m grid resolution).
- Refinement of the grid and input data were the main modifications. Grid resolutions of 10m, 20m, 50m, and 100m where tested.
- All parameter values (e.g., vegetation characteristics, surface Manning's N, soil characteristics, groundwater flow parameters) where unchanged from the Danish Groundwater Model.

G E U S

© Authors. All rights reserved

EU S G

 $(\mathbf{\hat{I}})$

CC

The water balance for

Fensholt Catchment: MIKE-SHE models

Fensholt Catchment: Water Balance: Sep 2016-Sept 2017

- Focus on two transects: T31 and T32. These transects have \geq different drain flow inputs into the transects.
- NB. Upland drain networks are disconnected and discharge \geq at the surface, therefore drain flow is simulated by including it with precipitation.

	mm/year	T31	T32	T33	T34
	Р	865	865	865	865
IN	Drain flow	471	12,114	3,757	4,003
	GWxy	29	1,096	116	393
	Sum In	1,365	14,075	4,738	5,261
	ET	612	662	662	662
	Drain flow	230	0	0	0
	Overland flow	432	9,873	3 <i>,</i> 655	3,580
001	GWxy	37	3,587	419	979
	GWz	13	13	15	35
	ΔS	51	12	22	57
	Sum Out	1,375	14146	4773	5313

P: precipitation, ET: evapotranspiration, S: storage, GWxy: lateral GW flow, GWz: vertical GW flow (†)

CC

Petersen et al. (2020) Riparian lowlands in clay till landscapes Part I, WRR

Measured Water Balance Details

		Data type	Data Source
	P	Directly monitored	Weather station onsite
	Drain flow	Directly monitored	Flow meter@drain outlet
IN	GWxy	Calculated (Darcy's Law)	Piezometer data (K and hydraulic head)
	ET	Indirectly monitored	Pan evaporation data onsite
	Drain flow	Calibrated	-
	Overland flow	Calibrated	-
Ουτ	GWxy	Calculated (Darcy's Law)	Piezometer data (K and hydraulic head)
	GWz	Calculated (Darcy's Law)	Piezometer data (K and hydraulic head)
	ΔS	Calculated	Piezometer data (K and est. specific storage)

Water Balance Uncertainties

Due to uncertainties in the estimation of the water balance components, in particular:

- Drain flow out (calibrated),
- Overland flow out (calibrated),,

• GW flows (2D calculation), the measured water balance can only provide an approximation of the flow partitioning within the transects.

Petersen et al. (2020) Riparian lowlands in clay till landscapes Part I, WRR

Simulated Water Balance Details

		Data type	Data Source
IN	Р	Directly monitored	Weather station onsite
	Drain flow	Directly monitored	Flow meter@drain outlet
	GWxy	Flux through cells at the upstream transect boundary	MIKE-SHE output
	ET	Calculated from cells within the transect	MIKE-SHE output
OUT	Drain flow	Calculated from cells within the transect area	MIKE-SHE output
	Overland flow	Calculated flow through cells at the downstream transect boundary	MIKE-SHE output
	GWxy	Flux through cells at the downstream transect boundary	MIKE-SHE output
	GWz	Flux through cells at the base of transect area	MIKE-SHE output
	ΔS	Calculated from cells within the transect area	MIKE-SHE output

Water Balance Uncertainties

GW flow uncertainties related to matching the numerical geological structure to that used in the measured WB pose a challenge.

Similarly, only flow along the transect was considered in the calculation of GWxy and overland flow. Δ S is calculated within the transect, therefore a 3D est. **The simulated WB provides an approximation of a 2D WB for the transects.**

CC I

EUS

G

Preliminary Results Fensholt Catchment : Sep 2016-Sept 2017

To directly compare the behaviour of the different models to the measured water balance (WB), the measured drain flow at the transects were used in the simulations.

		T31	ΜΙΚΕ	-SHE mod	lel grid re	solution	F
	mm/year	WB	10m	20m	50m	100m	GW flow in and out of the transects tends to be overestimated
IN	Р	865	865	865	865	865	
	Drain flow	471	471	471	471	471	
	GWxy	29	450	473	619	217	Overland flow out is underestimated
	Sum In	1,365	1786	1809	1955	1553	
	ET	612	592	533	580	604	
	Drain flow	230	705	266	500	834	Drain flow out of the transect is overestimated
OUT	Overland flow	432	15	69	26	9	
001	GWxy	37	161	34	83	17	T31 WB: ET and Overland flow dominate the outflows
	GWz	13	4	15	25	54	T31 Sim.: Drain flow dominates the outflows
	ΔS	51	5	3	5	2	Sim. WB by the 20 m appears to best approximate the
	Sum Out	1,375	1494	952	1021	1642	measured WB
	Error	-10	304	889	736	33	

* P: precipitation, ET: evapotranspiration, S: storage, GWxy: lateral GW flow, GWz: vertical GW flow

CC I

Preliminary Results Fensholt Catchment : Sep 2016-Sept 2017

To directly compare the behaviour of the different models to the measured water balance (WB), the measured drain flow was used in the simulations.

		T32	МІК	E-SHE mo	del grid reso	olution	Increase in CW flow within the transact is only reproduced by
	mm/year	WB	10m	20m	50m	100m	
IN	Р	865	865	865	865	865	10m sim.
	Drain flow	12,114	12,114	12,114	12,114	12,114	
	GWxy	1,096	1189	4562	2224	1643	Overland flow out is underestimated, the 10m sim produces
	Sum In	14,075	14168	17541	15203	14622	the best results
	ET	662	620	631	547	560	
	Drain flow	0	0	0	0	0	ΔS in the transect is in the correct order of magnitude
OUT	Overland flow	9,873	8625	5103	1205	0	
001	GWxy	3,587	4094	2246	2301	176	
	GWz	13	153	122	267	122	T32 WB: Drain and GW flow dominate the inflows,
	ΔS	12	26	15	18	22	resulting in overland and GW dominating the outflows
	Sum Out	14,146	13535	8377	3914	387	> T32 Sim.: Overland flow tends to dominate the outflows
	Error	-71	650	9,424	10,865	13,742	Sim. WB by the 10 m appears to best mimic the

• P: precipitation, ET: evapotranspiration, S: storage, GWxy: lateral GW flow, GWz: vertical GW flow

© Authors. All rights reserved

measured WB

G E U S

Review of findings

- Where drain inflow dominates the other inflows, the 10m grid resolution model appears to perform best in reproducing the overland flow out and groundwater flow behaviour, as seen in T32.
- Where drain flow is not the dominate inflow and drains are present within the transect, the simulated outflow is dominated by drain flow out. Indicating a possible issue with simulated drain implementation within the model.
- Overall, the measured WB can be approx. reproduced using a simulation with a finer grid resolution (10m or 20m)!

Thanks for your attention!

Saskia Noorduijn (<u>sano@geus.dk</u>) Anker Højberg <u>(alh@geus.dk</u>)

Tuesday 5 May 2020

References:

Petersen, R. J., Prinds, C., Iversen, B. V., Engesgaard, P., Jessen, S., & Kjaergaard, C. (2020). Riparian lowlands in clay till landscapes: Part I—Heterogeneity of flow paths and water balances. *Water Resources Research*, 56, e2019WR025808. <u>https://doi.org/10.1029/2019WR025808</u>

