

Building loss ratio comparison based on physical vulnerability and event-based data in Taiwan

Chih-Hao Hsu, Ting-Chi Tsao and Chuan-Yi Huang

Disaster Prevention Technology Research Center, Sinotech Engineering Consultants, Inc., Taipei, Taiwan

STUDY SITE

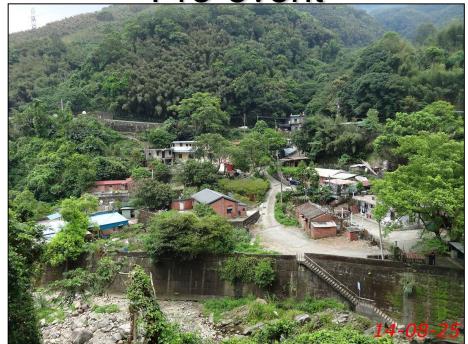
Taoyuan DF034 potential debris flow torrent:

Event: Typhoon Soudelor in 2015

Rainfall: 384 mm

Debris: 13,000 m³

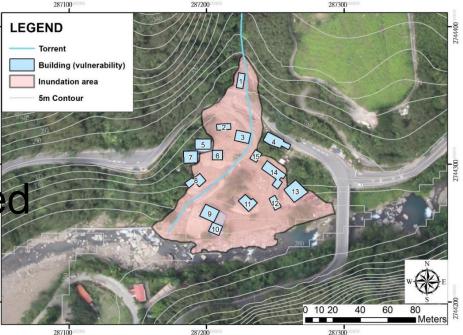
Damage: 15 houses


Video:

https://www.youtube.com/watch?v=kG

kStNCauvk&feature=youtu.be

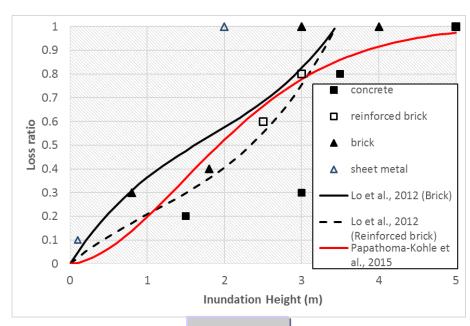
Pre-event

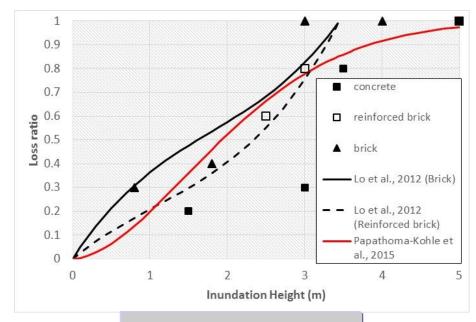


FIELD INVES

Loss ratio was determined by experts in the field.

ID	Structure Type	Floor	Loss ratio
1	Concrete	2	1
2	Reinforced Brick	1	1
3	Reinforced Brick	1	1
4	Sheet Metal	1	0.1
5	Concrete	2	0.3
6	Reinforced Brick	1	0.8
7	Concrete	2	0.2
8	Brick	1	0.3
9	Reinforced Brick	1	0.6
10	Sheet Metal	1	1
11	Brick	1	0.4
12	Brick	1	1
13	Concrete	1	0.8
14	Brick	1	1
15	Brick	1	1


- Professor
- SWCB representative
- Experienced researcher



Vulnerability- based on inundation height

Plot the field data on the previous vulnerability curves based on inundation height.

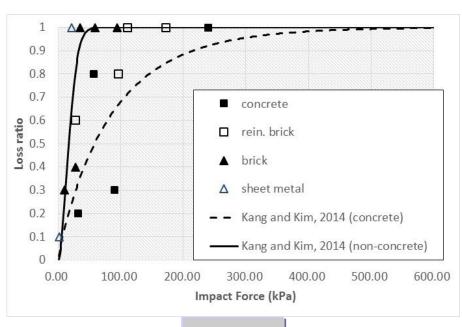
All data

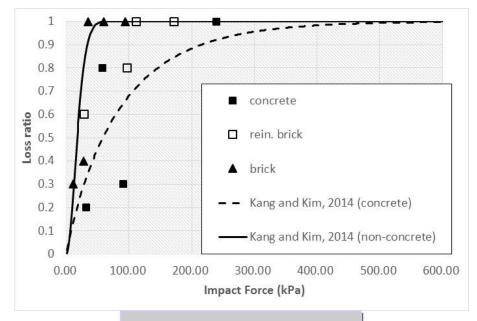
Without sheet metal

Vulnerability- based on impact force

Using RAMMS simulation to get the data for

impact force calculating.

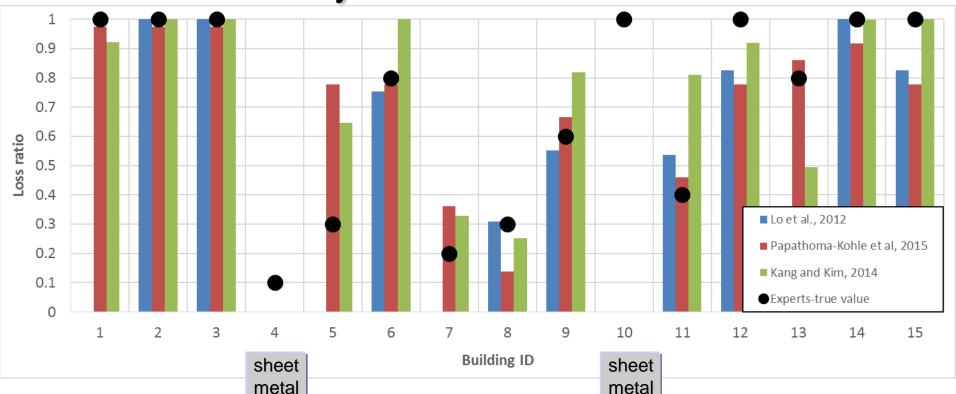

	Item	Parameter	Value		
	1	DEM	5 m* 5 m		
	2	Volume (derived from landslide)	26,966.7 m ³	(Lee et al., 2016)	
	3	Density of debris flow	2,100 kg/m ³	(Lee et al., 2010)	
	4	M	0.24	- Best-fit	
00000	5	ξ (200-400 if V<10 ⁶)	300		
2744400	6	Time	3 hrs	2744400	
2744300 tense	RAMMS_MaxV (r 0.0 - 2.0 - 4.0 - 7.0 - 10.0 10.0 - 14.		Building RAMMS_MaxH (m) 0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5 3.5 - 16.0	7 0 13 13 13 13 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	
2744200	287100		00 00 00 00 00 00 00 0	0 10 20 40 60 80 Meters	

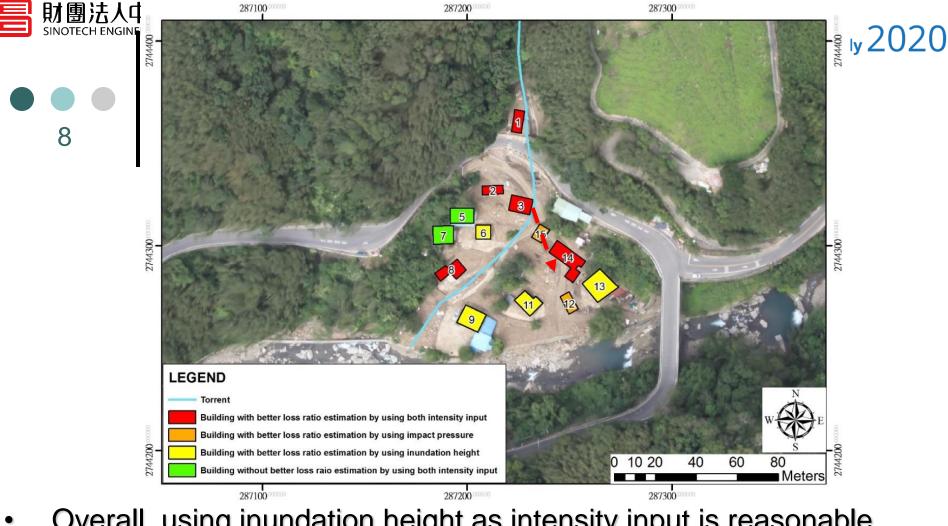


Vulnerability- based on impact force

Plot the field data on the previous vulnerability curves based on impact force.

All data


Without sheet metal



COMPARISON

By using different intensity input and vulnerability curve to estimate the loss ratio, it shows different accuracy.

- Overall, using inundation height as intensity input is reasonable.
- However, using impact pressure as intensity input is more suitable for buildings in the direction of flow.
- Besides, buildings 5 and 7 show higher deviation. we suppose the reason is that they are stronger concrete structure and on the edge of the inundation area.

Thanks for your attention

Chih-Hao Hsu ansonhsu@sinotech.org.tw https://dptrc.sinotech.org.tw/index_en.php