

Controls on spatial distribution of

soil pipe outlets in heavily degraded blanket bog

T.H. Regensburg ^{1*}, **P.J. Chapman**¹, **M. Pilkington**², **D. Chandler**², **M.G. Evans**³, **J. Holden**¹ ¹water@leeds, School of Geography, University of Leeds, Leeds, UK ²Moors for the Future Partnership, The Moorland Centre, Edale, UK ³School of Environment, Education, and Development, The University of Manchester, Manchester, UK

Soil pipes ubiquitous in blanket peat (Holden, 2005) Peatland restoration aims to

- prevent loss of stored carbon
- eluviate downstream flood risk
- restore flora and fauna habitats

Gully blocking

- Slow the flow
- Rewetting
- Revegetation (Parry et al. 2014)

Does blocking of soil pipes deliver the same benefits?

Spatial	Carbon	Spatial distribution of soil pipes
distribution of soil pipes	export by soil pipes	 assess spatial distribution of pipe outlet characteristics
Hydrological response of soil pipes	Implications blocking of soil pipes	 2. determine process mechanisms that control pipe outlet frequency 3. Implications for peatland restoration

0.49 km² headwater east of Manchester, ~ 1300 mm annually

Onset erosion: Early Medieval Warm Period ~950-1250 AD (Tallis, 1995; Tallis, 1997)

Loss of vegetation cover due atmospheric deposition: 1800 AD – present (Yeloff et al., 2006)

Peat depth up to 4 m at places, but all gullies incised to the bedrock.

Before 2017:

~90 pipes identified across catchment (Goulsbra, 2010)

Soil pipes appeared to actively output DOC to streams (Goulsbra, 2010; Wallet, 2004)

12 surveys | 12/2017 - 09/2019 Walking survey

Pipe outlet characteristics: e.g. GPS location, diameter, streambank slope, and depth to roof

LIDAR 0.5 m x 0.5 m (2014) was used to derive DTM, drainage networks, and aspect

Streambank Type	Location
IN GULLIES: streambanks in gullies with two banks on "left- and right-hand side"	HEAD: pipe outlet occurred where streambank showed signs of headward retreat at the pipe outlet
BETWEEN GULLIES: streambanks between gullies on "exposed edges of the blanket bog that faced the main drainage stem"	EDGE: pipe outlets occurred on fairly uniform stretches of streambank

OUTLET SHAPE = axis dependent

One axis exceeded the other > 5 cm

- Horizontally lenticular (h)
- Vertically lenticular (v)

Difference axis < 5 cm

- Circular (c)

southwest

IGULLIES	BETWEEN GULLIES		
EDGE	HEAD		
45	90		
230	no data		
76	110		
14	30		

east

Spatial distribution of soil pipes Aspect

(Regensburg et al., in review)

50

southwest

Results: pipe outlet frequency

N = 352 15.9 km of

streambanks 23.2 km⁻¹

Spatial distribution of soil pipes

Contour interval = 10 m. 490 – 530 m asl

Results: aspect

Spatial distribution of soil pipes Methods to derive pipe outlet frequency not always clear.

UNG shows best estimate for heavily degraded blanket bog.

Blanket peat catchments	Pipe frequency (km ⁻¹	Cross- sectional	Catchment Area (ha)
	stream	area of pipes (m ⁻² km ⁻¹ Streambank)	
	bank)		
Upper North Grain	23.2	0.73	49
160 blanket bog sites across UK	19.7	0.556	?
(Holden, 2005)			
Little Dodgen Pot Sike, North	9.5	0.026	44
Pennines (Holden and Burt, 2002)			
Cottage Hill Sike, North Pennines	31.69	0.308	17.4
(Holden et al., 2012a) *			
* Only observations form 2010		(Regens	burg et al., in re

Spatial distribution of soil pipes

Discussion: location of pipe outlets

Controls on pipe outlet frequency at EDGE locations:

Spatial distribution of soil pipes

Pipes are part of a natural state of UNG

- Too many to block them all -> new strategy?!

Explore the use existing practices to prevent the initiation of new pipes

- → gully reprofiling and subsequent revegetation or protective covering of exposed peat (Parry et al., 2014)
- Reprofiling of streambanks stabilizes steep streambank slopes, prevents sheet and rill erosion, and buries pipe outlets.
- Revegetation of bare streambanks provides cooling effect on peat, helps inhibit desiccation effects on streambank

N pipes: EDGE >> HEAD

particularly in deeply eroded gullies.

1. location strong control of pipe outlet frequency, size, shape and depth of pipes issuing onto streambanks

2. aspect strong control of frequency on southeast, south, southwest and west facing streambanks

3. desiccation-cracking possible control for pipe outlet frequency

Questions?

gytr@leeds.ac.uk
#blockingpeatpipes

The University of Manchester

Spatial distribution of soil pipes