

Development of Customized Variable-Resolution CPAS for

A. EfficienHTS bo custom	cy Evaluation osts every majo ized meshes, r
*'physics	driver': Routine co
atm_compute_dyn_tend	
physics driver	
V-Sector atm_compute_s	microphysics olve_diagnostics
<pre>physics_get_tend atm_advance_acoustic_step</pre>	
atm_recover_larg	e_step_variables 0 1000
(a) Fig. 6 Averaged timing	
CPAS 128-1	
Average:	56.8 % time say
Speedup	R microphysic
1.91x	'atm_advance
2.01x	'atm_compute
B. Perforn	nance Evaluation
 Simulation results were 	
Environ	mental Predict
 Taylor's coverin 	g 3 km refiner
All fore	cast variables i
non-HT	S for both mes
Case 1: a Cold	Passage of Front
Case 2:	Heavy Rainfall
Case 3: A Tropi	Passage of cal Cyclone
Fig fo	. 7 The Taylor's skill or comparison with
• This CP	AS 128-to-1 kn metrics. In ger
by trad	itional Lloyd-ba
Promisi	ing model perf
 Study c 	of modelling ac
, It analy cyclone	zed the simula e using CPAS' cι

neral, mesh generated by CPAS' have better quality than those generated ased methods.

formance along with remarkable speed-up using HTS illustrate the validity resolution local/regional forecast in daily operational manner.

curacy using CPAS' mesh can be found in Lui et al. (2019). ated tracks and intensities of western north Pacific tropical ustomized variable-resolution meshes with comparison to the Weather Research and Forecasting (WRF) model.

*Lui et al. (2019) used JIGSAW-GEO-based mesh generation algorithm in an early version of CPAS; further modeling result analysis will be carried out using the current OLAM-based meshes.

Poster Presentation (Lui *et al.* 2019)