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Overview

* Technical developments of the 1-way & 2-way coupling
* Inland water vs floodplains : water budget closure
* Model performance;

* Why coupling ?
* Closing of the water budget over land in ECMWF model
e Currently inland water (lakes) do not conserve water;

* Provide freshwater input to coupled ocean model;

* |nvestigate the potential for 2-way coupling ( variable inland water —
inundation );

* Allow for routine evaluation of discharge of the coupled model.



Models and coupling

HTESSEL: ECMWEF land-surface model
CaMa-Flood: Global hydrodynamic model

precpitabon

1-way coupling: 2-way coupling:
HTESSEL -> CaMa: Surface & sub-surface runoff HTESSEL -> CaMa: Surface & sub-surface runoff
& potential inland water evaporation & potential inland water evaporation

CaMa-HTESSEL -> Flooded area fraction



Singe executable coupling

HTESSEL CaMa-Flood Coupling Sffft”nfoﬂﬁf;‘}c'ﬂfgd

CaMa-Flood stand-alone

-e  CaMa-Flood initialization

* Initialization Initialization , .
e CaMa-Flood initialization /// DO it=1,NT (frequency of driving
it= data)
* DO it=1,NT : w
« HTESSEL calculations Receive driving ______+ Read netcdf with driving data

data e Code in cama-flood

* Accumulate coupling fluxes .
library

(sro,ssro, evaow) T ey — | ~__
' ' pora * Send Fluxes
e |F COUPLING TIME STE . .

Send Fluxes .
e Advance Can/ e 7 ET OB L Finalize CaMa
Integration Send coupling
e Receive flood fraction // data

Finalize CaMa _—
Finalize  — Finalize

* Generic coupling infrastructure can be extended to other fields or used in other models. Receive/send data routines handle
the grids interpolations (pre-computed);
* No MPI : send/receive of global fields



Grids consistency

Red dots indicate land/lake grid-points that do not have any
associated river cell at 15min. (Antarctica, Azov sea, some
islands)

The green points indicate IFS grid-points that should provide
runoff to the 15min river network but are ocean points

(coastal regions) \

There is a reduction of grid-points that do not provide runoff to
the river catchments from 1.5% of global land in TL255 to
0.46% in TL639
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Some inconsistencies are unavoidable without a close
development of IFS and CaMa grids (huge effort). Binary
land/ocean in IFS responsible for part of the problems.
Activating sub-grid land not allowed in IFS, would be a
significant effort. 5




P-E—-R—-AS;=¢ (1)
Global water budget R—Ew-D-ASp—e,  (2)

P—F—D— A5, —ASp = [3)

m__m__-m__m

coupl 883.4 -554.7 -26.2 356.7 349.4 -0.6 -27.5 -18.8 -20.2 -2.3
coup2r 883.4 -547.5 -15.7 353.5 3453 -0.6 0.0 -17.1 -7.5 -89 -1,0
coup2a 883.4 -557.2 -31.5 359.6 347.8 -0.5 0.0 -32.9 -19.7 -21.1 -24

coupl — 1 way coupling
coup2r — 2-way coupling replacing lake fraction in htessel by flooded area of CaMa-Flood

coup2a — 2-way coupling adding flooded area of CaMa-Flood to lake fraction in htessel
e(%) is the total water budget residual normalized by total precipitation

Due to the different representation of surface water in HTESSE|I & CaMa-Flood, and different simulation grids,
it is not possible to “force” a full closure of the water budget;
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1-way vs 2-way: Global statistics

- coupl = coup2r = coup2a
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Global evolution of flooded area (top), inland water fraction
(middle) and inland water evaporation (bottom)

coupl

coup2r

coup2a

esa-cci (only inland water fraction)

* Consistent evolution of flooded area in all
simulations (2-way coupling is stable);

* Large differences in inland water fraction in
coup2r, what’s a good dataset to verify ?

* Changes in inland water fraction reflected in
inland water evaporation (reach about 5% of
total global evaporation)



Global inland water fraction

Mean inland water fraction

a) esa-cci inland water fraction b) coup2r inland water fraction
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* Nothing done on resolved lakes in IFS (CL>0.5)
* Coup2r :almost no inland water in northern regions: no inundation from main channel.
* Coup2a: keeps the northern areas adding some seasonality.



Test Cases overview

 Set of experiments with different HTESSEL and CaMa-Flood
configurations. Mainly TL639 in HTESSEL (like ERA5) and 15min CaMa-
Flood. Also driving CaMa-Flood directly with ERA5 and ERASL runoff.

* The discharge simulations were evaluated against GRDC stations for
the period 1982-2017 for all datasets, including only stations with at
least 5 years of data, resulting in a total of 1345 stations.

* No manual checking — there are stations that should be discarded

* GLOFAS simulations driven by ERA5 were also used as benchmark;



Test Cases: Computational runtime
Exp |Runtime(lyea)  Detals

Oosm 47 minutes OSM only TL639 OMP=16 (time step = 1hour)
coupl 92 minutes OSM+CMF TL639, 15min, OMP=16 (tstep=5.4min)
iner 40 minutes CMF 15min OMP=16 (adptstp=5.4min)

kine 7.8 minutes CMF 15min OMP=4 (tstep=1hour) kinematic wave
kine06 25 minutes CMF 06min OMP=8 (tstep=1hour) kinematic wave
iner06 8,5 hours CMF 06min OMP=36 (tstep=2.5min)

iner03 3.2 days CMF 03min OMP=36 (tstep=1.2 min)

~182 days (estimated)
iner01 30min/hour cannot run CMF 01min OMP=36 (tstep=24 s
monthly chunks



Test Cases: Global overview

a) Correlation (all: #1345 stations) Correlation
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Final remarks

* Single executable coupling between HTESSEL and CaMa-Flood allowing both
models to run with different spatial grids (HTESSEL — regular lat/lon or gaussian
reduced , CaMa-Flood : 15min, 06min, 05min, 03min, 01min );

* Generic coupling interface in CaMa-Flood: could be used to couple to other land-
surface models ;

 Flexibility of running the models with different grids limits further coupling (e.g.
infiltration of floodplains water);

 Different representation of inland water (lakes) and floodplains : no “forced”
consistency between the models and resolved vs unresolved lakes in HTESSEL
limit the full closure of the water budget ;

* Large regional differences in performance between GLOFAS and CaMa-Flood.
Despite these differences, overall performance of CaMa-Flood is comparable to
that of GLOFAS, considering that CaMa-Flood was not calibrated;



