
Methane emissions from abandoned offshore wells? – First data from a 2019 research cruise to the Dogger Bank, German North Sea (Poster EGU2020-6792)

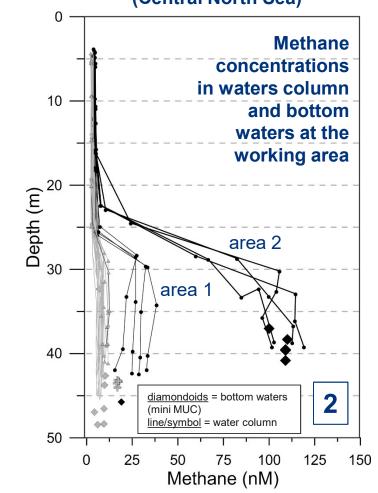
Martin Blumenberg¹, Katja Heeschen², Hendrik Müller¹, Simon Müller¹, Miriam Römer³, Stefan Schlömer¹, Katrin Schwalenberg¹

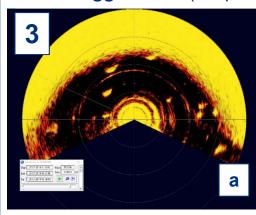
¹BGR; ²GFZ Potsdam; ³MARUM; all Germany (contact: martin.blumenberg@bgr.de)

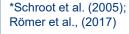
Working area: Central North Sea "Entenschnabel" Dogger Bank area (German EEZ). Color-codes: "bright spots" showing "shallow gas", well locations, survey areas [(boxes W1, W2, and W3), reference sites R1 and R2, and the seep area S1 in the Dutch Dogger Bank].

Research targets: Detection of potential seepage and flares in the vicinity of abandoned well sites and known salt diapirs

Methods: CTD/water sampler, "mini-MUC", METS, hydroacoustics (water-column imaging, multibeam bathymetry and backscatter, sub-bottom profiling), deeptowed electromagnetics (i.e. sediment resistivity) deployed with RV HEINCKE.


Session BG5.2 – Methane and its fate in the Biosphere




Methane emissions from abandoned offshore wells? – First data from a 2019 research cruise to the Dogger Bank, German North Sea (Poster EGU2020-6792)

Main working area: "Entenschnabel" (Central North Sea)

Dutch Dogger Bank (seep site close to German EEZ*)

- Proof of gas bubbles [sonar (a) and camera (b)]
- Dissolved methane in MUCbottom waters up to ~11.000 nM

Methane concentrations in "Entenschnabel"

- Methane background in waters below pycnocline ~ 10 nM. One area exceeding background by factor 2 (area 1) and one by 10 (area 2)
 - ~100 x lower than at Dutch Dogger seep site

Other observations

• Echo-sounding (e.g., background) revealed numerous gas flares in area 2

Preliminary conclusion

- None of the 9 studied abandoned wells were found to release gas flares (fluctuating or low diffusive release cannot be excluded by our approach)
 - Elevated CH₄ and flares seem to be related to the presence of shallow gas alongside the salt diapirs [Römer *et al.* (subm.)]

Session BG5.2 – Methane and its fate in the Biosphere

