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Motivation

Global reconstructions of geomagnetic core field for the past millennia are useful
to investigate the geodynamo process or estimate geomagnetic shielding against
galactic cosmic rays and they find application in archeo- and paleomagnetic
dating. Reconstructions are typically built from volcanic and archeomagnetic
samples providing records of the ancient Earth’s magnetic field. Unfortunately,
on a global scale records are clustered, unevenly distributed towards the Western
Eurasian region and corrupted by measurement uncertainties. This considerably
complicates the reconstruction of the ancient Earth’s magnetic field. So far, the
resulting uncertainties related to modeling, in particular due to the uneven data
distribution, have never been quantified well.
In this display, we present a new concept to model snapshots of the global
archeomagnetic field. We adress the problem of uneven data distribution, as
well as the non-linear relation between archeomagnetic records and the field
itself, by pursuing a fully Bayesian approach. To demonstrate the potential of
this approach, we present results from a case study at the end of this display.



Data distribution
We use archeomagnetic data (declination, inclination, intensity) in
the interval [800, today] with ≈8000 records in total, taken from
GEOMAGIA1. The figure below shows the temporal distribution of
the number of records, the next slide shows the spatial distribution.
Strong variations in number of data are partly due to accuracy or
rounding of age information.
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Data distribution

Full records
Incomp. records

The blue dots refer to complete records, where declination,
inclination and intensity are reported, the orange dots refer to
records where at least one component is missing. Note, that these
are all data locations, and the data distribution varies with time.



Data distribution

Full records
Incomp. records

Both distributions are highly uneven. Here, we focus on the spatial
distribution, as we present snapshot models. Temporal evolution,
and thus tackling the uneven distribution in time, is the aim of
future work.



Further challenges

Archeomagnetic modeling poses two other challenges we are going
to adress. First, the observations are non-linearly related to the
modeled vector field components. Second, uncertainties arising not
only from the uneven distribution in space, but also from the
measurement process and from the modeling process have to be
incorporated.



Modeling strategy
Almost all existing models are based on truncated spherical
harmonics2.
Instead, we use Gaussian processes3 to address the problem of
uneven data distribution. The Gaussian process posterior
distribution is characterized by a mean- and a covariance function,
which are calculated using

E[B(x)|o] = B̄(x) + ΣBOΣ−1
O

(
o − Ō

)
Cov[B(x),B(y)|o] = KB(x , y)− ΣBOΣ−1

O Σ>BO ,
(1)

where the Σ-matrices are built from a correlation kernel KB

ΣO =Cov[O,O] = {KB(z i , z j)}i ,j=1,...,n

ΣBO =Cov[B(x),O] = {KB(x , z i )}i=1,...,n .

2Gubbins et al. 1985.
3Rasmussen et al. 2006.



Kernel construction

The correlation kernel is constructed following Holschneider et al.
(2016). The correlation kernel for the magnetic potential reads

KΦ(x , y) =
R2

√
1− 2t + a2

(2)

where R is a reference radius, t = x · y/R2 and a = |x ||y |/R2.
The closed form (2) is called Legendre kernel.



The field correlations are then given by derivatives of the kernel for
the potential (2). We modify the kernel in two ways. First, we
seperate the dipole part from the higher orders, as we expect the
field to be dipole dominated. Second, we add two parameters ε
and ρ. ε is a scaling factor for the measurement errors, which we
add since we believe that they may be underestimated. ρ is a
factor controlling the residual level, in which contributions to the
field which we do not model (e.g. the crustal field) are absorbed.
The actual kernel reads

KB = KB,DP(ḡm
1 , Σ̄1) + λKB,ND(R) + εE + ρP . (3)



The figure below depicts the correlation structure of the non-dipole
part in (3). The units are arbitrary, dark red refers to a high
correlation, white to no correlation and blue to anti-correlation.



To incorporate the modeling related uncertainties, we address the
model parameters in (3):

KB = KB,DP(ḡm
1 , Σ̄1) + λKB,ND(R) + εE + ρP . (3)

The parameters are ḡm
1 , Σ̄1, λ,R, ε and ρ.

ḡm
1 , Σ̄1, the prior dipole coefficients and covariance, are eliminated

by choosing a non-informative prior for the dipole part. The
reference radius basically controls the slope of the spectrum, and is
estimated by comparing the prior spectrum to the IGRF models
from 1900 to 2015, which is shown on the next slide.
The remaining parameters, the non-dipole variance λ, ε and ρ are
marginalized using numerical integration.
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Finally, we use a linearization to address the problem of non-linear
relations between observations and modeled quantities. However,
the question arises around which model this linearization is
performed. The prior model is not suited, so instead we implement
a two step strategy. In a first step, the complete records are used
to perform the linearization in a Laplace approximation setting.
This way, a model is constructed which is then used to perform the
linearization for the incomplete records in a second step.



The whole algorithm is available as a python software package,
called CORBASS4. CORBASS makes use of the FieldTools library5

and is available at http://doi.org/10.5880/GFZ.2.3.2019.008

4Schanner et al. 2019.
5Matuschek et al. 2019.

http://doi.org/10.5880/GFZ.2.3.2019.008


Case study
We conclude by presenting results from a case study. To conduct
this study, we grouped the data into bins of 100 yrs. width. The
reason for this is that we need at least 30 full records to perform
the first step in the linearization strategy. The grouped data
distribution is shown below, the bin we focus on in this
presentation is highlighted.
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We start by showing the mean and the standard deviation of the
posterior distribution for the down component Z of the magnetic
field and the field’s intensity F at the Earth’s surface. The records
are shown as orange dots. Note two things: First, one can see a
high standard deviation in regions of low data coverage, while in
regions covered well by data, for example in Europe, the standard
deviation is low. Second, due to the strong correlation in the data,
we see the South Atlantic Anomaly offshore to the west of Africa,
even though there is not a single record at the anomalies position.
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To the right, we show the
posterior distribution for axial
magnetic dipole g0

1 , together
with comparison models6. The
mean agrees with models using
a similar database and the
distribution resembles the
histogram created from the
ensembles provided by
COV-ARCH. The mean deviates
from Arhimag, which is not
surprising since the latter
incorporates historical records,
additionally to the data we use. 35 34 33 32
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6Senftleben 2019; Constable et al. 2016; Hellio et al. 2018



The figure below shows the Gauss coefficient power spectrum. Our
model agrees with COV-ARCH within the error bonds. Arhimag
and ARCH10k report less power at degree 3 and fall off faster at
higher degrees. The latter is likely due to the regularization
structure underlying these models.
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We indicate the a priori slope of our model in grey. As can be seen,
from degree 5 on, our model only reproduces the slope, indicating
that the data only allow reconstructions for the lower degrees.
Nothing
Nothing
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Finally, by constructing models for all bins in the database, we
build a discrete time series and show the evolution for the dipole
intensity. Overall the evolution agrees with the comparison models.
The strong deviations at epochs 1100 and 1500 may be caused by
outliers, which we haven’t tested for yet.
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Similarly, we present the dipole
axis wander (the outer circle is
at a latitude of ≈40◦). Again,
the evolution agrees with the
comparison models. Deviations
for the 800 and 1100 epochs
may again be caused by outliers.
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Conclusion

I We presented an algorithm to tackle the challenges posed by
archeomagnetic data

Uneven data distribution ↔ Gaussian processes
Non-linear relation ↔ Two step linearization

Modeling uncertainties ↔ Marginalization of parameters

I Further, snapshot models for selected epochs were shown

I Overall, the results agree with established models

All results converged into a publication submitted to GJI7.

7Mauerberger et al. submitted.



Outlook

There are several ideas how to continue this work:

I A moving window may be used to refine the time series
presented above

I A temporal correlation kernel allows to tackle the uneven
distribution in time

I This further allows the incorporation of the sometimes very
large temporal uncertainties

I Once a time-dynamic model is available, sediment core data
may be included

I The database may be increased to construct longer time series



Thank you!
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Thank you!


