
# The seismic sound of deep volcanic processes

S. Cesca<sup>1</sup>, T. Dahm<sup>1,2</sup>, S. Heimann<sup>1</sup>, M. Hensch<sup>3</sup>, J. Letort<sup>4</sup>, H.N.T. Razafindrakoto<sup>1</sup>, M. Isken<sup>1,5</sup>, E. Rivalta<sup>1</sup>

<sup>1</sup>GFZ German Research Centre for Geosciences, Potsdam, Germany
 <sup>2</sup>University of Potsdam, Potsdam, Germany
 <sup>3</sup>Geolocial Survey of Baden-Württemberg, State Seismological Service, Freiburg, Germany
 <sup>4</sup>Observatoire Midi Pyrénées, IRAP, CNRS UMR 5277, Université Paul Sabatier, Toulouse, France
 <sup>5</sup>University of Kiel, Germany



# Controversy – how do crustal magma reservoirs look ?



Gudmundsson (2012) JVGR

Jackson et al. (2018) Nature

# Key observations

#### 1. Longevity of crustal reservoirs

from geochronology - millions of years (see e.g. Jackson et al. 2018)

- 2. Large volumes of magma produced in very short time
  - → Laacher See, Eifel, 12 BC: VEI≈6, ≈6.3 km<sup>3</sup> erupted material
  - → Mayotte 2019: new offshore seamount ( $\approx$ 3.4 km<sup>3</sup> effused magma) in  $\approx$ 6 month
- 3. Only few exhumed volume-reservoirs (plutons) documented

e.g. silicic Sierra Nevada batholith, mafic Stillwater, Skaergraad, Bushweld intrusions

4. Geophysical images of large volumetric reservoirs often ambiguous (unsuccessful)

# Contribution of source / seismicity studies

**Hypothesis:** reservoirs with high melt fraction may be excited to "resonance", modeling observed low frequency signals provide constraints on geometry and internal structure of the reservoirs

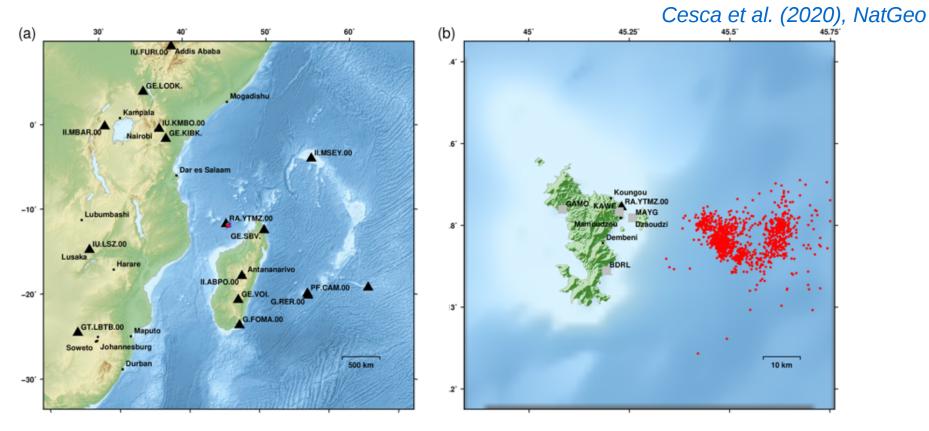
#### **Resonator models**:

```
crack like (Chouet, 1986; Maeda and Kumagai, 2017)
```

```
→ f_0 \approx 0.05 - 0.10 Hz (L \approx 5 - 15 km)
```

spherical (Crosson and Bame, 1985; Schneider et al., 2017)

 $\rightarrow$  f<sub>0</sub> = 1-5 Hz (r>100m), but signal strongly attenuated in far field


Excitation: (a) rupture at reservoir-boundary, (b) piston/caldera collapse





Magma rise from a deep reservoir An example of VLP activity at Mayotte

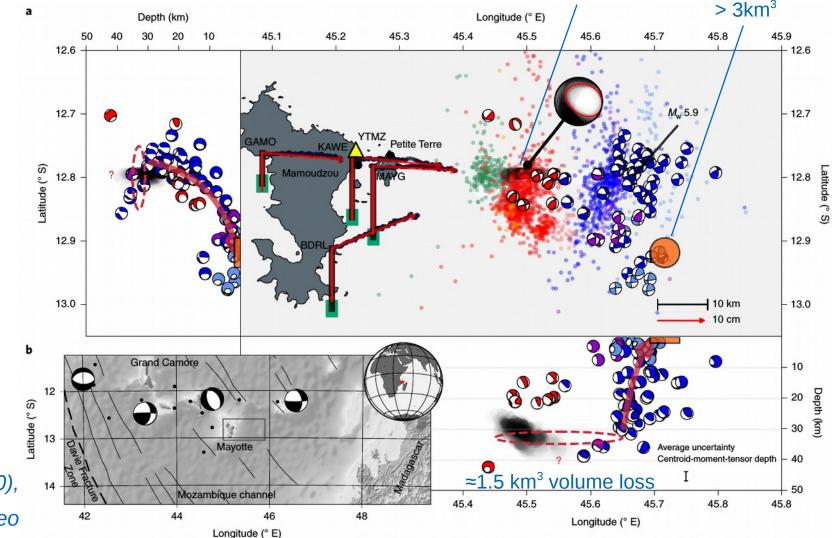
# VLPs during the volcanic crisis off-coast Mayotte, Comores Islands



- → Thousands seismic volcano-tectonic (VT) swarm,  $M_{max} \approx 5.9$
- → Subsidence/East-motion (≈10 cm / 6 month) on Mayotte Island
- $\rightarrow$  Hundreds Very long period (VLP, monochromatic T $\approx$ 16 s) earthquakes

# VLPs as the oscillation of a deep reservoir

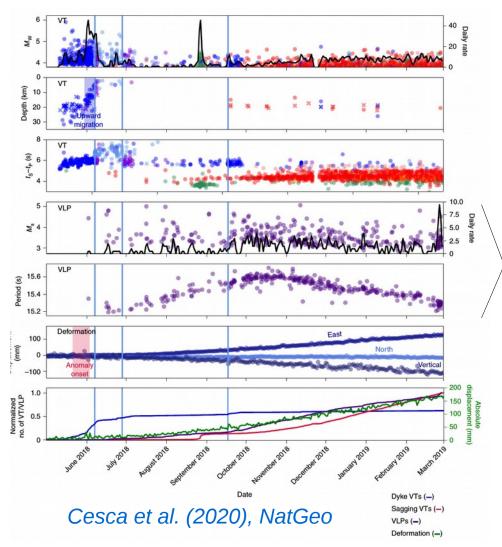
new volcano


**VLPs** 

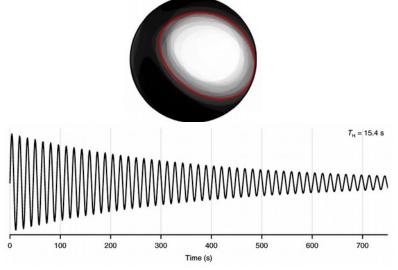
VT mark the path of magma ascent.

VLP as response of oscillation of a deep depleting reservoir.

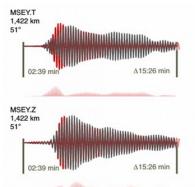
Repetitive source location and axysimmetric MT

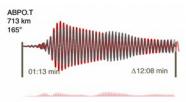

> Cesca et al. (2020), NatGeo




# Unusual VLP signals are observed up to 1500 km distance

| VLP_Event                              |                                                 |
|----------------------------------------|-------------------------------------------------|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Detection of ~400 VLPs ( $M_s$ 2.9 – 5.1)       |
|                                        | Duration 10-30 min, monochromatic at ~16 Hz     |
|                                        | Simultaneous weak VTs modulate waveforms        |
|                                        | Dominant frequency gradually changing           |
|                                        | Dominant nequency gradually changing            |
|                                        |                                                 |
|                                        | Embedded high frequency VT modulates VLP signal |
|                                        | Low frequencies, BP 0.06–0.08 Hz                |
|                                        | High frequencies, BP 0.06–0.50 Hz               |
|                                        | - atom                                          |
|                                        | Vertical acceleration                           |
|                                        |                                                 |
|                                        | - Ker                                           |
|                                        | - at the .                                      |
|                                        | 10:25:00 10:55:00                               |
|                                        | VLP spectra Time                                |
| 09:30 09:40 09:50 10:00                | 10'                                             |
| Example of VLP waveforms               | Spectral ratio VLP/noise                        |
| Cesca et al. (2020), NatGeo            | 100                                             |
| Cesta et al. (2020), NatGeo            | $10^{-2}$ $10^{-1}$ $10^{0}$                    |
|                                        | Frequency (Hz)                                  |

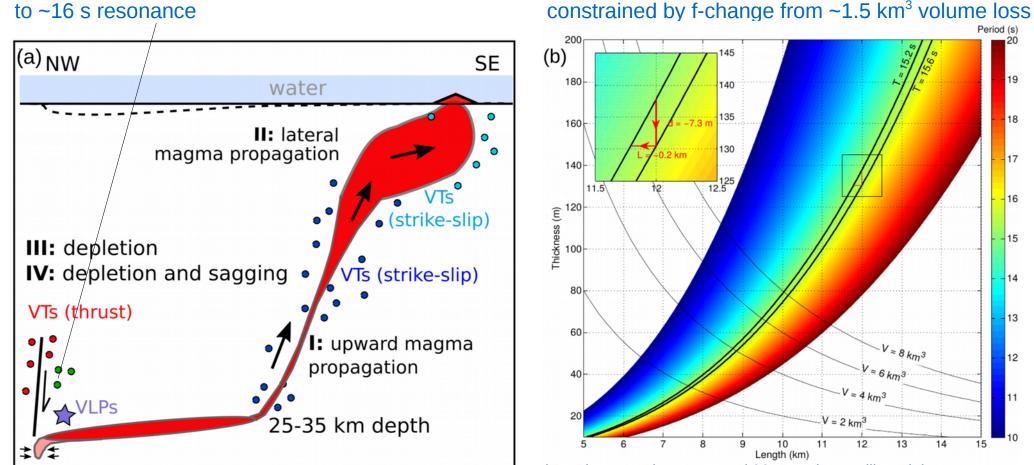

# Seismic signals during the crisis




#### Inversion for VLP + source time function



#### Waveform fits



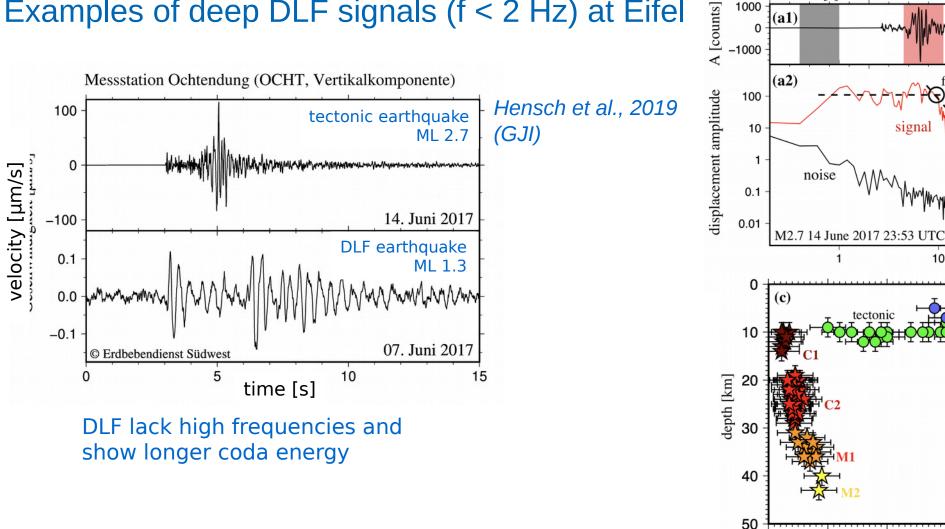





# Dimension of the resonator

#### Cesca et al. (2020), NatGeo




Thrust VT's excite sill-like reservoir to ~16 s resonance

based on Maeda & Kumagai 2017 and own sill models

Length  $\approx$  12 km, thickness  $\approx$  130 m

Discontinuous fluid path from depth An example of DLF activity at Eifel

### Examples of deep DLF signals (f < 2 Hz) at Eifel



50 Hensch et al., 2019 (GJI) 20 10 0 corner frequency [Hz]

time [s]

(a1)

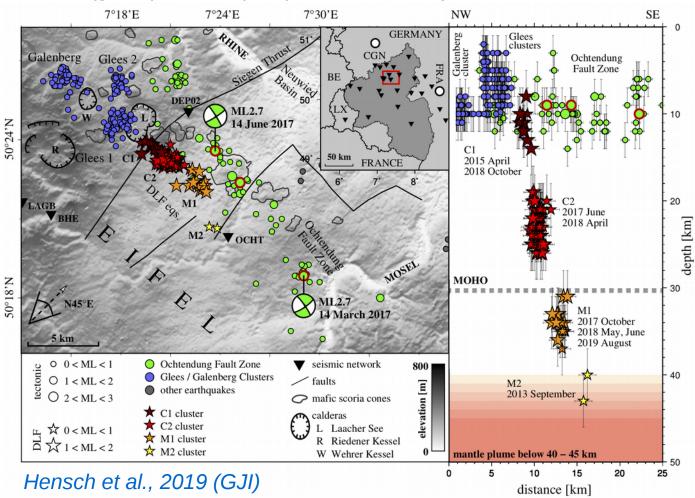
1000

0 -1000 10

Mmm

fc = 10 Hz

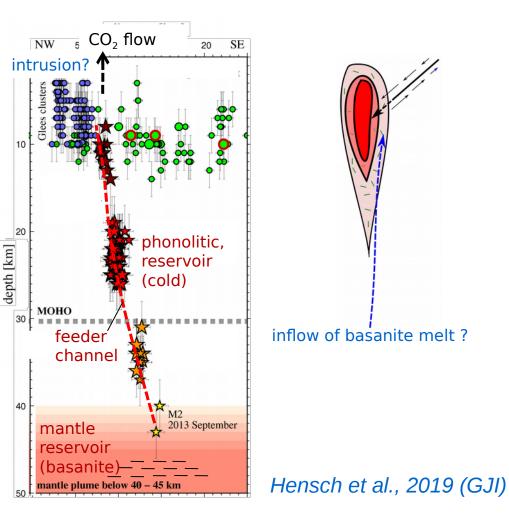
10


30

40

tectonic

### DLF EQ beneath the Laacher See volcano


Tectonic (green), swarm (blue) and DLF activity 2013-1019



- first DLF in 2013
  in ≈45 km depth
- ≈100 DLF in four cluster till 2019
- repeating DLF
- no clear migration

- separated from tectonic events
- "volcano-tectonic" swarm in 2017

# Are DLF earthquakes beneath the Eifel triggered by "reservoir unrest" ?



- DLF indicate intermediate reservoirs along feeder channel continuous used for CO<sub>2</sub> flux ?
- Channel occasionally used by basanite magma (1<sup>st</sup> deep to shallow activity ≈60 m/day)
- Reheating of reservoir causes magma mingling/mixing with potential to build-up pressure ?

# Conclusions

(different sounds of volcanic signals from interaction with reservoirs)

VLPs (2-30s, clustered, M>4, z<40 km):

Large dikes/sill (3-12 km) can be excited to resonance, e.g. by caldera collapse
 Resonating reservoirs indicated in all crustal and upper mantle depth levels
 Reservoir roof region is destabilized by pressure depletion from drainage

DLFs (1-5 Hz, clustered, M<3.7, z<40 km):

DLF events are typically weak and occur in short activity bursts
 Occur in mush zone close to pre-existing, differentiated melt batches
 Likely triggered from pressure build-up from magma mixing / mingling



Cesca et al. The sound of deep volcanic sources EGU 2020 Vienna, Austria

